期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
纤维增强塑料/钢筋混凝土复合结构数值分析的非经典理论单元 被引量:1
1
作者 曹志远 孔凡峰 《玻璃钢/复合材料》 CAS CSCD 2002年第6期3-9,共7页
基于等效非经典理论 ,本文给出了FRP/RC构件的抗弯刚度、抗剪刚度计算公式 ,对FRP/RC复合结构建立了两种非经典理论单元 ,并对一个比较典型的框架进行了分析 ,研究了FRP/RC复合结构的基本性能 。
关键词 纤维增强塑料/钢筋混凝土复合结构 数值分析 复合材料/混凝土 等效非经典理论
下载PDF
玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能 被引量:3
2
作者 张霓 郑晨阳 +1 位作者 羡丽娜 王连广 《复合材料学报》 EI CAS CSCD 北大核心 2020年第12期3052-3063,共12页
为研究玻璃纤维增强树脂复合材料(GFRP)管-钢筋/混凝土空心构件的抗弯性能,编制了受弯构件的非线性分析程序,系统地分析了空心率、配筋率、GFRP管管壁厚度及混凝土强度等级等主要参数对其抗弯性能的影响,并通过试验对所编制的程序进行验... 为研究玻璃纤维增强树脂复合材料(GFRP)管-钢筋/混凝土空心构件的抗弯性能,编制了受弯构件的非线性分析程序,系统地分析了空心率、配筋率、GFRP管管壁厚度及混凝土强度等级等主要参数对其抗弯性能的影响,并通过试验对所编制的程序进行验证,最后建立适用于GFRP管-钢筋/混凝土空心构件的抗弯承载力计算公式。结果表明:利用编制的受弯构件非线性分析程序与建立的抗弯承载力公式,计算结果与试验结果均吻合较好,抗弯承载力随空心率的减小、配筋率的提高、GFRP管管壁厚度的增加及混凝土强度的增大而增加,空心率对构件抗弯承载力影响最大,其次是配筋率和GFRP管管壁厚度,最后是混凝土强度等级,空心部分半径比在0.25~0.5为宜,可以适当提高配筋率、GFRP管管壁厚度或混凝土强度等级来弥补该空心构件抗弯承载力,研究结论可为该结构在实际应用中提供参考依据。 展开更多
关键词 玻璃纤维增强树脂复合材料管-钢筋/混凝土 空心构件 抗弯性能 非线性分析程序 承载力公式
原文传递
Fracture suppression at steel/concrete connection zones by ECC 被引量:2
3
作者 钱吮智 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期190-194,共5页
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ... In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact. 展开更多
关键词 engineered cementitious composite (ECC) material ductility steel/concrete interaction zones fracture suppression
下载PDF
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:8
4
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ECC) ECC/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
下载PDF
Ion-transport characteristics of new-old concrete composite system 被引量:4
5
作者 龙广成 谢友均 +1 位作者 丁巍巍 Ahmed OMRAN 《Journal of Central South University》 SCIE EI CAS 2014年第2期790-798,共9页
New-old concrete composite system usually exists in concrete repairing structure.In the present work,series of experiments were carried out to investigate permeability and ion diffusion properties of new-old concrete ... New-old concrete composite system usually exists in concrete repairing structure.In the present work,series of experiments were carried out to investigate permeability and ion diffusion properties of new-old concrete composite by measuring 6-hour coulomb charge and chloride diffusivity.The interrelation among transport properties of new-old composites,new,and old concretes was also discussed.Results indicate that the permeability and chloride diffusivity of new-old concrete composite system closely interrelate to the corresponding new concrete and old concrete.The interfacial transition zone between new concrete and old concrete greatly influences the transport property of new-old concrete system.Compared with the corresponding new concrete and old concrete lower permeability and diffusivity values for the new-old concrete composites can be achieved by choosing suitable new concrete.It is possible to design the tailor-made new-old concrete composite system for repair given the transport property. 展开更多
关键词 new-old concrete composite chloride diffusivity PERMEABILITY transport property
下载PDF
Experimental study on slender reinforced concrete columns wrapped with CFRP 被引量:1
6
作者 HU Zhongjun NIE Lei +1 位作者 PAN Jinglong XU Tian 《Global Geology》 2009年第4期226-229,共4页
By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitt... By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers. 展开更多
关键词 carbon fiber reinforced plastics reinforced concrete column stability coefficient slenderness ratio
下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
7
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 steel fiber reinforced self-stressing concrete composite beam constructional bar bonding interface FATIGUE
下载PDF
Performance of Square Lightweight Concrete Specimens Confined by CFRP and GFRP
8
作者 A. Vatani Oskouei M. Pirgholi Kivi S. Taghipour Boroujeni 《Journal of Civil Engineering and Architecture》 2010年第5期22-28,共7页
Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confi... Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confine the concrete. Effect of Fiber Reinforced Polymer on confined lightweight concrete elements is one of the most important research fields. It is generally accepted that the strength and stiffness of confined concrete is higher than unconfined one. In this research, behavior of confined and unconfined concrete specimens under uniaxial loading has been studied. In order to decrease stress concentration corners of specimens were chamfered to a radius of 5 to 25 mm. The Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) were used to confine lightweight concrete specimens. The stress-strain curve of specimens is compared. 展开更多
关键词 Axial loading CFRP CONFINEMENT GFRP lightweight concrete.
下载PDF
Behaviour of GFRP R.C. Slabs in Flexure in Localenvironment An Experimental Study
9
作者 M. V. Venkateshwara Rao K. Jagannadha Rao +1 位作者 M. V. Seshagiri Rao P. Jagannadha Rao 《Journal of Civil Engineering and Architecture》 2012年第10期1369-1375,共7页
A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durabi... A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m ~ 0.45 m, which is a part of large research problem undertaken with different ratios of 10ng span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars. 展开更多
关键词 GFRP bars steel bars corrosion slab panels flexure DEFLECTIONS
下载PDF
Strengthening of Pultruded Glass FRP Section Combined with Concrete Slab Using CFRP Plates
10
作者 Ashraf Biddah Khaled El Sawy +1 位作者 Steve Raynor Tarek Sheikhoun 《Journal of Civil Engineering and Architecture》 2010年第7期49-55,共7页
This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings hi... This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites. 展开更多
关键词 Experimental hybrid composites CFRP GFRP strengthening CONCRETE
下载PDF
Experimental Study of Concrete Column Shape Modification Using Fiber Reinforced Polymer Composite Shells and Expansive Cement Concrete
11
作者 Zihan Yan Chris P. Pantelides 《Journal of Civil Engineering and Architecture》 2010年第2期1-7,共7页
Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stre... Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model. 展开更多
关键词 Chemical post-tensioning concrete columns CONFINEMENT expansive cement concrete fiber reinforced polymers post tensioning stress strain relations.
下载PDF
The Study of Resistance of Cement Composites against Microbial Attack
12
作者 Estokova Adriana Ondrejka Harbulakova Vlasta +2 位作者 Luptakova Alena Prascakova Maria Stevulova Nadezda 《Journal of Civil Engineering and Architecture》 2011年第6期555-561,共7页
The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of b... The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of bacteria causing the deterioration of concrete has been linked to the generation of biogenic sulphuric and nitric acids which originate in corrosion process by dissolution of calcium containing minerals from the concrete matrices. This paper primarily focuses on the investigation of influence of sulphur-oxidising bacteria Acidithiobacillus thiooxidans and sulphate-reducing bacteria Desulfovibrio desulfuricans at the resistance degree of cement composites. Various concrete composites with 5% addition of black coal fly ash as cement replacement as well as the reference samples without coal fly ash addition were studied in the experiments environments of sewage system proceeded during 90 days. The The laboratory experiments as well as experiments in situ in real corrosion was manifested by surface changes and weight changes of cement composites samples as well as changes in pH values of leachates. Considerable surface changes were detected in all investigated samples by microscopic methods. Crystals precipitated on concrete samples surface were identified by EDX as mixture of gypsum and ettringite. The roughness increases of surface of cement microscopy. composites were determined by confocal laser scanning 展开更多
关键词 Concrete MIC BACTERIA BIOCORROSION biodeterioration.
下载PDF
Concrete Placement for Bridge Decks on an Expressway Extension Project
13
作者 Janusz Holowaty 《Journal of Civil Engineering and Architecture》 2015年第11期1354-1361,共8页
The paper presents examples of technological designs for concrete placement in road bridges constructed during the S5/S 10 expressway extension in Poland. The project included eight concrete or composite bridge struct... The paper presents examples of technological designs for concrete placement in road bridges constructed during the S5/S 10 expressway extension in Poland. The project included eight concrete or composite bridge structures with different numbers of decks. The concrete placement technology is presented for the following bridge decks: slabs cast-in-situ, composite with precast or VFT (prefabricated composite beam) beams and mixed with cast in situ slabs and VFT-WIB (filler beam) beams. Continuous concrete placement was adopted for almost all the bridge superstructures except the mixed-type decks where construction joints were necessary. To control shrinkage, formwork deformations and existing restraints, the concrete was poured in layers and in stages. The design pace of concrete placement was moderate to be regulated at site without compromising safety and quality. The placement methods enabled both efficient and safe concrete pours. 展开更多
关键词 Concrete bridge CURING flesh concrete placement and consolidation shrinkage.
下载PDF
Analysis of Harnessing Waste Fine Aggregate for Sustainable Production of Concrete Elements
14
作者 Jacek Katzer Janusz Kobaka 《Journal of Civil Engineering and Architecture》 2010年第7期42-48,共7页
This paper focuses on cement composites based on waste fine aggregate obtained from hydroclassification all-in-aggregate in the Central Pomerania region in northern Poland. In the world there are regions with poor sup... This paper focuses on cement composites based on waste fine aggregate obtained from hydroclassification all-in-aggregate in the Central Pomerania region in northern Poland. In the world there are regions with poor supplies of coarse aggregate, which is one of the most essential raw materials used for production of ordinary concrete. In these regions, instead of coarse aggregate, there are often very large deposits of fine aggregate such as natural sand and fine all-in-aggregate. These raw materials may be used for concrete production of standard mechanical properties. Manufacturing concrete based on locally available fine aggregate is inexpensive which encourages the local production of fine aggregate cement composites instead of ordinary concrete, requiring gravel transported from distant places. 展开更多
关键词 AGGREGATE fine aggregate waste aggregate cement composite
下载PDF
Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer
15
作者 Adel Elfayoumy Nasim Uddin 《Journal of Civil Engineering and Architecture》 2015年第9期1034-1046,共13页
Maintaining both the safety and serviceability of deteriorating highway bridge networks necessitates suitable BMS (bridge maintenance system) tools that can maximize cost effectiveness. Numerous experiments have bee... Maintaining both the safety and serviceability of deteriorating highway bridge networks necessitates suitable BMS (bridge maintenance system) tools that can maximize cost effectiveness. Numerous experiments have been conducted to detect the long-term mechanical properties of the epoxy resin materials used in FRP (fiber reinforced polymers) strengthening and maintenance technique. Experiments were used to develop a short-term test and construct a model that can reliably predict the long-term behavior of epoxy resin. Furthermore, FEA (finite element analysis) models were developed, using the ANSYS software, to simulate three unstrengthened and FRP strengthened prestressed concrete girder bridges of different configurations. Models simulate the original and aged properties of construction and retrofitting materials under the application of AASHTO (American Association of State Highway and Transportation Officials) fatigue truck and a site-specific fatigue truck in different scenarios. These models were used to develop the bridge performance chart for the capacity of the bridge, with and without strengthening interventions, as a BMS tool. The results show an immediate significant improvement in the concrete tensile stress with the intervention of FRP strengthening. 展开更多
关键词 Increasing heavy vehicle load bridge management FRP strengthening.
下载PDF
Experimental Plans Method to Formulate a Resin Concrete
16
作者 Miloud Beddar Zinedine Boudaoud +1 位作者 Mohamed Aziz Chikouche Halima Saadia M'hammedi 《Journal of Civil Engineering and Architecture》 2012年第10期1376-1383,共8页
This work is an experimental approach based on the method of experimental plans to determine a specific formulation of a resin concrete. In this study, an unsaturated polyester resin (thermosetting resin) was used w... This work is an experimental approach based on the method of experimental plans to determine a specific formulation of a resin concrete. In this study, an unsaturated polyester resin (thermosetting resin) was used with two types of mineral fillers (dune sand and crushed sand), and with the addition of a marble powder to ensure the continuity of the particle size mixing granular. The lack of the methods for developing this kind of composite materials, had led us to perform an initial experimental approach to define the experimental field, that is to say determine the mass proportions of the various compounds of mixture of our study. In the second approach, we have established and implemented fully experimental plans with three factors namely: factor (1): sand, factor (2): resin, factor (3): marble powder. Test results being the density of polymer concrete and the mechanical resistances. Finally, multi-parameters regression allowed us to determine predictive mathematical models for the different responses of the study. Tests results showed that at three days we got a tensile strength of about 16 MPa with a resin concrete density of 1.9 g/cm3. This shows the advantages of this material. 展开更多
关键词 CONCRETE polyester resin experimental plans method mechanical resistance
下载PDF
Behavior and Flexural Prediction of Special Cementitious Bonding Material for Fiber Reinforced Strengthening Systems
17
作者 Judy M. I. Soliman Tarek K. Hassan +2 位作者 Amr A. Abdelrahman Osama Hamdy Sami H. Rizkalla 《Journal of Civil Engineering and Architecture》 2017年第3期232-239,共8页
Strengthening of RC structures with externally bonded FRP (fiber reinforced polymers) has become an important challenge in civil engineering. Epoxy is the main bonding agent used so far, but in the case of a fire, i... Strengthening of RC structures with externally bonded FRP (fiber reinforced polymers) has become an important challenge in civil engineering. Epoxy is the main bonding agent used so far, but in the case of a fire, it is subjected to complete loss of his bonding capabilities. Mineral based composites strengthening systems consist of FRPs and a cementitious bonding agent which form a repair or strengthening system that is more compatible with the concrete substrata, and roved its efficiency. The current research introduces the use of a special cementitious material "Grancrete" as a bonding agent. Test results of 32 T-section RC beams strengthened with various FRG (fiber reinforced Grancrete) strengthening systems are presented. The results demonstrated that most of the specimens were likely to fail by debonding of the FRP from the concrete either at the ends or at intermediate flexural cracks. This paper presents an in-depth study aimed at the development of a better understanding of debonding failures in RC beams strengthened with externally bonded FRP systems. Different analytical models, published in the literature for plate end debonding, are reviewed and compared to test results. The results also demonstrated that when using U-wraps, the specimens were likely to fail by FRP sheet rupture. 展开更多
关键词 C Beam concrete DEBONDING intermediate crack debonding FRP Grancrete strengthening.
下载PDF
Numerical study on flexural behaviors of steel reinforced engineered cementitious composite(ECC) and ECC/concrete composite beams 被引量:13
18
作者 YUAN Fang PAN JinLong WU YuFei 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期637-645,共9页
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red... Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated. 展开更多
关键词 engineered cementitious composite(ECC) constitutive model flexural behavior finite element
原文传递
Seismic cracking analyses of two types of face slab for concrete-faced rockfill dams 被引量:2
19
作者 KONG XianJing ZHANG Yu +2 位作者 ZOU DeGao QU YongQian YU Xiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第4期510-522,共13页
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional anal... Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs. 展开更多
关键词 CFRD face slab seismic cracking failure DFRCC
原文传递
State of the art review on the production and bond behaviour of reinforced geopolymer concrete
20
作者 Yifei Cui Weixia Ai +3 位作者 Biruk Hailu Tekle Menghua Liu Shihao Qu Peng Zhang 《Low-carbon Materials and Green Construction》 2023年第1期322-346,共25页
Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promisi... Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promising low-carbon alternative to traditional Portland cement-based concrete(OPC).GPC-bonded reinforcing bars offer a promising alternative for concrete structures,boasting excellent geopolymer binder/reinforcement bonding and superior corrosion and high-temperature resistance compared to Portland cement.However,due to differences in the production process of GPC,there are distinct engineering property variations,including bonding characteristics.This literature review provides an examination of the manufacturing procedures of GPC,encompassing source materials,mix design,curing regimes,and other factors directly influencing concrete properties.Additionally,it delves into the bond mechanism,bond tests,and corresponding results that represent the bond characteristics.The main conclusions are that GPC generally has superior mechanical properties and bond performance compared to ordinary Portland cement concrete(OPC).However,proper standardization is needed for its production and performance tests to limit the contradictory results in the lab and on site. 展开更多
关键词 Geopolymer concrete Geopolymerisation and production Bond study FRP bar reinforced concrete
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部