An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and gr...An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.展开更多
The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed...The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.展开更多
文摘An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872010, 10732020 and 11072008)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitythe Ph.D. Programs Foundation of Beijing University of Technology (Grant No. 52001015200701)
文摘The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.