期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti_2Ni intermetallic coating on titanium alloy 被引量:17
1
作者 冯淑容 汤海波 +1 位作者 张述泉 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1667-1673,共7页
A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder ble... A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix. 展开更多
关键词 INTERMETALLIC composite coating laser cladding wear
下载PDF
High temperature frictional wear behaviors of nano-particle reinforced NiCoCrAlY cladded coatings 被引量:13
2
作者 王宏宇 左敦稳 +3 位作者 王明娣 孙桂芳 缪宏 孙玉利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1322-1328,共7页
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ... The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant. 展开更多
关键词 metal-matrix composite frictional wear NiCoCrA1Y coating NANO-PARTICLES laser cladding
下载PDF
FATIGUE LIFE PREDICTION METHOD FOR IMPACTED LAMINATES
3
作者 徐颖 温卫东 崔海涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期87-93,共7页
The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted lami... The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%. 展开更多
关键词 laminated composites fatigue testing IMPACT progressive damage
下载PDF
Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti-6Al-4V alloy using friction surfacing 被引量:8
4
作者 I. ESTHER I. DINAHARAN N. MURUGAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1263-1274,共12页
This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method an... This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding. 展开更多
关键词 aluminum matrix composite titanium friction surfacing coating WEAR
下载PDF
Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites 被引量:3
5
作者 Hao-yang YU Wei FANG +2 位作者 Ruo-bin CHANG Pu-guang JI Qing-zhou WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2331-2339,共9页
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest... The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites. 展开更多
关键词 high-entropy alloy copper-matrix composites transition layer structure diffusion WEAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部