Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
TiC-TiB2-NiAl composites were fabricated by self-propagating high temperature reaction synthesis(SHS) with Ti, B4C, Ni and Al powders as raw materials. The effects of NiAl content on phase constituents and microstru...TiC-TiB2-NiAl composites were fabricated by self-propagating high temperature reaction synthesis(SHS) with Ti, B4C, Ni and Al powders as raw materials. The effects of NiAl content on phase constituents and microstructures were investigated. The results show that the reaction products are composed of TiB2, TiC and NiAl. The content of NiAl increases with the adding of Ni+Al in green compacts. TiB2, TiC and NiAl grains present in different shapes in the matrix, TiB2 being in hexagonal or rectangular shapes, TiC in spherical shapes, and NiAl squeezed into the gaps of TiC and TiB2 grains. With the increase of NiAl content, the grains of TiC-TiB2-NiAl composites are refined, their density and compressive strength are improved, and the shapes of TiC grains become spherical instead of irregular ones. Finally, the fracture mechanism of the composites transforms from intergranular fracture mode to the compounded fracture mode of intergranular fracture and transgranular fracture.展开更多
Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high...The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) andhigh-resolution transmission electron microscopy (HRTEM). Internal friction and electron microscopy results show that solute atom clusters are present in association with dislocationsin supersaturated cold-rolled composites. During recrystallization process, the internal friction peak position of Al-Mg-Si/3SiCp/2Mg (volume fraction,%) is higher than that of Al-Mg-Si/3SiCp(volume fraction,%) due to more solute atom clusters formed in association with the dislocations in the cold-rolled composite with a much higher Mg content, indicating a strongerresistance for the recrystallization nucleation.展开更多
A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the...A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.展开更多
The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12B...The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str...Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).展开更多
In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison....Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.展开更多
Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C part...Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.展开更多
A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness...A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.展开更多
A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distingui...A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-e...It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-elastic properties of a composite reinforced byglass fiber knitted fabric. In order to define the final 3-D configuration of the loop reinforcingstructure, the interactions between the adjacent loops, the large displacement and the contactelements without friction were considered. The values predicted were compared with the experimentalresults.展开更多
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
基金Projects(51072104,51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by Taishan Scholars Project of Shandong,China
文摘TiC-TiB2-NiAl composites were fabricated by self-propagating high temperature reaction synthesis(SHS) with Ti, B4C, Ni and Al powders as raw materials. The effects of NiAl content on phase constituents and microstructures were investigated. The results show that the reaction products are composed of TiB2, TiC and NiAl. The content of NiAl increases with the adding of Ni+Al in green compacts. TiB2, TiC and NiAl grains present in different shapes in the matrix, TiB2 being in hexagonal or rectangular shapes, TiC in spherical shapes, and NiAl squeezed into the gaps of TiC and TiB2 grains. With the increase of NiAl content, the grains of TiC-TiB2-NiAl composites are refined, their density and compressive strength are improved, and the shapes of TiC grains become spherical instead of irregular ones. Finally, the fracture mechanism of the composites transforms from intergranular fracture mode to the compounded fracture mode of intergranular fracture and transgranular fracture.
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
基金Project(LH201236)supported by the Pre-research Project of Equipment Development Department of China
文摘The recrystallization nucleation processes of two cold-rolled Al-Mg-Si/SiCpcomposites with different contents of Mg are investigated mainly by dynamic mechanical analyzer (DMA) and electron microscopy including high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) andhigh-resolution transmission electron microscopy (HRTEM). Internal friction and electron microscopy results show that solute atom clusters are present in association with dislocationsin supersaturated cold-rolled composites. During recrystallization process, the internal friction peak position of Al-Mg-Si/3SiCp/2Mg (volume fraction,%) is higher than that of Al-Mg-Si/3SiCp(volume fraction,%) due to more solute atom clusters formed in association with the dislocations in the cold-rolled composite with a much higher Mg content, indicating a strongerresistance for the recrystallization nucleation.
基金Projects(51404041,51304249)supported by the National Natural Science Foundation of ChinaProject(2015JJ3016)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject supported by the State Key Laboratory for Powder Metallurgy Foundation,Central South University,Changsha,China
文摘A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.
基金Project(11374028)supported by the National Natural Science Foundation of ChinaProject supported by the Cheung Kong Scholars Program of China
文摘The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(51421001)supported by the National Natural Science Foundation of ChinaProject(106112015CDJXY130002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(B08040)supported by Introducing Talents of Discipline to Universities,China
文摘Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.
基金Project(51175138)supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100111110003)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2008AA03A233) supported by the Hi-tech Research and Development Program of China
文摘A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.
基金Supported by the Aeronautical Science Foundation of China(2008ZA52012)the Six Kinds of Excellent Talent Project in Jiangsu Province of China(2010JZ004)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010027)~~
文摘A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.
文摘It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-elastic properties of a composite reinforced byglass fiber knitted fabric. In order to define the final 3-D configuration of the loop reinforcingstructure, the interactions between the adjacent loops, the large displacement and the contactelements without friction were considered. The values predicted were compared with the experimentalresults.