Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal...Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the ben...Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.展开更多
Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective...Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.展开更多
The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted lami...The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the s...This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.展开更多
Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were teste...Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were tested. MORs of PP/wood fiber, PS/fiber, and PE/fiber composites with coupling agent added were raised by 18.4%, 37.1%, and 42%. respectively, compared to those without coupling agent. Among the three kinds of fiber/plastic composites, fiber/PP composite has best mechanical properties, and it can meet quality standard of eligible grade product and come up to the excellent grade products of China when the coupling agent is added. The performance of composite made of PE/fiber or PS/fiber can exceed qualified product grade only with coupling agent added.展开更多
The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compare...The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determ...A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint(SLJ) and end notch flexure(ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length.展开更多
The lateral stability of Velocity-173, canard-pusher type airplane, has been investigated with and without an extended vertical panel. It is well known that Velocity-173 has an excellent longitudinal stability but a r...The lateral stability of Velocity-173, canard-pusher type airplane, has been investigated with and without an extended vertical panel. It is well known that Velocity-173 has an excellent longitudinal stability but a relatively poor lateral stability. To improve the lateral stability, two types of composite sandwich panel have been designed and attached to the vertical tail of Velocity-173. A series of flight test has been performed to measure the effects of the extended vertical tail. Analytical methods, such as maximum likelihood estimation method and real-time parameter estimation method, have been used to extract lateral controllability/stability derivatives from flight test data. This work validates the effects of an extended panel to the lateral stability.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the st...Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the stress is linearly dependent on the strain and the damage modes of specimens are brittle fracture for both kinds of tests. Dispersibility models of compression and shear strength are expressed as Re-N(415.39, 6 586.36) and Rs-ln(5.071 8, 0.155 3), respectively. When normal and lognormal distributions were used to describe the dispersibility models of compression and shear strength, and the compression or shear load follows the normal distribution, the almost same failure probability can be obtained from different reliability analysis methods.展开更多
A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro...A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro-flow channels ranging from 100 μm to 500 μm in width can be produced simultaneously. But, edge chippings easily occur on the rib surface of GCBPP during microplaning due to brittleness of graphite composites. Experimental results show that edge chippings result in the increase of contact resistance between bipolar plate and carbon paper at low compaction force. While the edge chippings scarcely exert influence on the contact resistance at high compaction force. Contrary to conventional view, the edge chippings can significantly improve performance of microfuel cell and big edge chippings outperform small edge chippings. In addition, the influence of technical parameters on edge chippings was investigated in order to obtain big, but not oversized edge chippings.展开更多
This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings hi...This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.展开更多
An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carr...An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.展开更多
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result...The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.展开更多
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
文摘Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.
文摘Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.
文摘The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
文摘This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.
基金The project was supported by: 1. the Natural Science Foundation of Fujian Province of China(E0310025). 2. Fujian province Educational Committee key project(JA03047). 3 Fujian province Science and Technology Committee key project(2003H015). 4. Foundation of key laboratory of hiomaterial of Ministry of Education(04-08).
文摘Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were tested. MORs of PP/wood fiber, PS/fiber, and PE/fiber composites with coupling agent added were raised by 18.4%, 37.1%, and 42%. respectively, compared to those without coupling agent. Among the three kinds of fiber/plastic composites, fiber/PP composite has best mechanical properties, and it can meet quality standard of eligible grade product and come up to the excellent grade products of China when the coupling agent is added. The performance of composite made of PE/fiber or PS/fiber can exceed qualified product grade only with coupling agent added.
文摘The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
文摘A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint(SLJ) and end notch flexure(ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length.
文摘The lateral stability of Velocity-173, canard-pusher type airplane, has been investigated with and without an extended vertical panel. It is well known that Velocity-173 has an excellent longitudinal stability but a relatively poor lateral stability. To improve the lateral stability, two types of composite sandwich panel have been designed and attached to the vertical tail of Velocity-173. A series of flight test has been performed to measure the effects of the extended vertical tail. Analytical methods, such as maximum likelihood estimation method and real-time parameter estimation method, have been used to extract lateral controllability/stability derivatives from flight test data. This work validates the effects of an extended panel to the lateral stability.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
基金Project(51175424) supported by the National Natural Science FoundationProject(B07050) supported by the 111 Project,ChinaProject (JC20110257) supported by the Basic Research Foundation of Northwestern Polytechnical University
文摘Carrying on a series of compression and shear tests by a large number of specimens, reliabilities of T300/QY8911 laminated composite were studied when dispersibility models were described. The results show that the stress is linearly dependent on the strain and the damage modes of specimens are brittle fracture for both kinds of tests. Dispersibility models of compression and shear strength are expressed as Re-N(415.39, 6 586.36) and Rs-ln(5.071 8, 0.155 3), respectively. When normal and lognormal distributions were used to describe the dispersibility models of compression and shear strength, and the compression or shear load follows the normal distribution, the almost same failure probability can be obtained from different reliability analysis methods.
基金Project(51075155)supported by the National Natural Science Foundation of ChinaProject(2013ZZ017)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro-flow channels ranging from 100 μm to 500 μm in width can be produced simultaneously. But, edge chippings easily occur on the rib surface of GCBPP during microplaning due to brittleness of graphite composites. Experimental results show that edge chippings result in the increase of contact resistance between bipolar plate and carbon paper at low compaction force. While the edge chippings scarcely exert influence on the contact resistance at high compaction force. Contrary to conventional view, the edge chippings can significantly improve performance of microfuel cell and big edge chippings outperform small edge chippings. In addition, the influence of technical parameters on edge chippings was investigated in order to obtain big, but not oversized edge chippings.
文摘This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.
基金Supported by the National Basic Research Program(973 Program)of China(2010CB227201)the State Key Program of National Natural Science of China(21236003)+2 种基金the National Natural Science Foundation of China(21476022)the Fundamental Research Funds for the Central Universities(JD1515 and YS1406)Beijing Higher Education Young Elite Teacher Project(YETP0509)
文摘An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.
基金Supported by National Natural Science Foundation of China under Grant No.10902083the Natural Science Foundation of Shannxi Province under Grant No.2009GM1007
文摘The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.