Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
The paper presents examples of technological designs for concrete placement in road bridges constructed during the S5/S 10 expressway extension in Poland. The project included eight concrete or composite bridge struct...The paper presents examples of technological designs for concrete placement in road bridges constructed during the S5/S 10 expressway extension in Poland. The project included eight concrete or composite bridge structures with different numbers of decks. The concrete placement technology is presented for the following bridge decks: slabs cast-in-situ, composite with precast or VFT (prefabricated composite beam) beams and mixed with cast in situ slabs and VFT-WIB (filler beam) beams. Continuous concrete placement was adopted for almost all the bridge superstructures except the mixed-type decks where construction joints were necessary. To control shrinkage, formwork deformations and existing restraints, the concrete was poured in layers and in stages. The design pace of concrete placement was moderate to be regulated at site without compromising safety and quality. The placement methods enabled both efficient and safe concrete pours.展开更多
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
文摘The paper presents examples of technological designs for concrete placement in road bridges constructed during the S5/S 10 expressway extension in Poland. The project included eight concrete or composite bridge structures with different numbers of decks. The concrete placement technology is presented for the following bridge decks: slabs cast-in-situ, composite with precast or VFT (prefabricated composite beam) beams and mixed with cast in situ slabs and VFT-WIB (filler beam) beams. Continuous concrete placement was adopted for almost all the bridge superstructures except the mixed-type decks where construction joints were necessary. To control shrinkage, formwork deformations and existing restraints, the concrete was poured in layers and in stages. The design pace of concrete placement was moderate to be regulated at site without compromising safety and quality. The placement methods enabled both efficient and safe concrete pours.