期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合TOFD与脉冲反射法的复合超声检测系统的研制 被引量:3
1
作者 郝晓军 牛晓光 +2 位作者 郝红卫 代真 郭立峰 《无损检测》 2010年第1期59-61,64,共4页
为了对运行后设备进行安全性和剩余寿命的评估,必须对结构中的焊缝进行无损检测。在超声衍射时差法(TOFD)技术的基础上,研制了结合超声TOFD技术与脉冲反射技术的超声复合检测系统。介绍了用TOFD技术对焊缝检测时存在上下表面不可检测的... 为了对运行后设备进行安全性和剩余寿命的评估,必须对结构中的焊缝进行无损检测。在超声衍射时差法(TOFD)技术的基础上,研制了结合超声TOFD技术与脉冲反射技术的超声复合检测系统。介绍了用TOFD技术对焊缝检测时存在上下表面不可检测的盲区,实现对整个焊缝全方位的检测,提高了焊缝检测的可靠性。 展开更多
关键词 超声衍射时差法 焊缝 复合检测系统
下载PDF
Automated visual inspection of surface defects based on compound moment invariants and support vector machine 被引量:1
2
作者 Zhang Xuewu Xu Lizhong +1 位作者 Ding Yanqiong Fan Xinnan 《High Technology Letters》 EI CAS 2012年第1期26-32,共7页
The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these... The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects. 展开更多
关键词 copper strips surface (CSS) defects compound invariant moments support vector machine(SVM) visual inspection system neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部