The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s...The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.展开更多
Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding the...Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding these pin specimens at a constant speed of 0.36 m/s (570 r/min) against a steel counter disk at room temperature,100 C and 150 C,respectively.To observe the wear characteristics and investigate the wear mechanism,the morphologies of the worn surfaces and specific wear rate were analyzed by using scanning electron microscope (SEM) and Arrhenius plots.Moreover,the effects of fiber orientation and hybrid ratio were discussed.展开更多
The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of...The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of 0.25, 0.5 and 1 MPa at a constant sliding speed of 0.13 m/s. According to the results, Fe modified the primary Mg2 Si particles from irregular dendritic form to smaller particles with polyhedral shapes, refined the pseudo-eutectic structure, and led to the formation of hard b-Al5 Fe Si platelets in the matrix. In spite of hardness improvement by these microstructural changes, the resistance of the composite against dry sliding wear was impaired. SEM examination of the worn surfaces, wear debris, and subsurface regions confirmed the negative effect of b-phase on the tribological properties. It was found that b-particles were fractured easily, thereby decreasing the potential of the substrate to resist against sliding stresses and giving rise to the instability and easy detachment of tribolayer as large delaminated debris. The friction results also revealed that Fe slightly decreased the average friction coefficient, but increased the fluctuation in friction.展开更多
The dry sliding wear behavior of AA6061/ZrB2 in-situ composite prepared by the reaction of inorganic salts K2ZrF6 and KBF4 with molten aluminum was investigated.An attempt was made to develop a mathematical model to p...The dry sliding wear behavior of AA6061/ZrB2 in-situ composite prepared by the reaction of inorganic salts K2ZrF6 and KBF4 with molten aluminum was investigated.An attempt was made to develop a mathematical model to predict the wear rate of AA6061/(0-10%) ZrB2 in-situ composites.Four-factor,five-level central composite rotatable design was used to minimize the number of experiments.The factors considered are sliding velocity,sliding distance,normal load and mass fraction of ZrB2 particles.The effect of these factors on the wear rate of the fabricated composite was analyzed and the predicted trends were discussed by observing the wear surface morphologies.The in-situ formed ZrB2 particles enhance the wear performance of the composite.The wear rate of the composite bears a proportional relationship with the sliding velocity,sliding distance and normal load.展开更多
Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribom...Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribometer.Friction coefficients and wear rates were measured within a load range of 200-1000 N at a spindle rotary speed of 380 r/min.Worn surface morphologies,phase and element compositions were studied by scanning electron microscope(SEM),X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS),respectively.The mechanism of synergistic effect of CNTs and SiC nanoparticles was discussed.The results indicate that the AZ91D nanocomposites show better wear resistance properties and different wear mechanisms compared with AZ91D.The AZ91D nanocomposites reinforced with 0.5%CNTs and 0.5%nano-SiC have the best tribological capacity.The wear mechanisms for the Mg-based hybrid nanocomposites appear to be a mix-up of micro-ploughing,micro-cutting,slight adhesive wear and delamination.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
The effect of brake oil on sliding behavior of carbon/carbon(C/C) and carbon/carbon-silicon carbide(C/C-SiC) composites was investigated with the variation of laminate orientation and surface conformity. The partial a...The effect of brake oil on sliding behavior of carbon/carbon(C/C) and carbon/carbon-silicon carbide(C/C-SiC) composites was investigated with the variation of laminate orientation and surface conformity. The partial and low conformity contacts with the normal and parallel orientations of laminates were considered. The normal load was varied from 50 to 90 N in a step of 10 N. The friction and wear behavior was investigated under reciprocating sliding conditions. The results showed that friction coefficient and wear loss of composites with normal orientation of laminates were larger as compared to those of composites with parallel orientation of laminates. C/C composites with normal orientation of laminates yielded the highest value of friction coefficient. Wear loss decreased by a maximum of 78%, and friction coefficient decreased by a maximum of 49% in low conformity contacts as compared to partial conformity contacts. The presence of brake oil reduced the adhesion tendency of compacted wear debris because the formation of friction film was difficult, and thus, friction behavior was affected. The wear debris retention between the contact surfaces due to confined area motion in reciprocating sliding depicted the tribological behavior.展开更多
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.
基金supported by Changwon National University in 2010the Korea Research Foundation Grant (KRF-2008-D00005) funded by the Korean Government (MOEHRD Basic Research Promotion Fund)
文摘Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding these pin specimens at a constant speed of 0.36 m/s (570 r/min) against a steel counter disk at room temperature,100 C and 150 C,respectively.To observe the wear characteristics and investigate the wear mechanism,the morphologies of the worn surfaces and specific wear rate were analyzed by using scanning electron microscope (SEM) and Arrhenius plots.Moreover,the effects of fiber orientation and hybrid ratio were discussed.
文摘The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of 0.25, 0.5 and 1 MPa at a constant sliding speed of 0.13 m/s. According to the results, Fe modified the primary Mg2 Si particles from irregular dendritic form to smaller particles with polyhedral shapes, refined the pseudo-eutectic structure, and led to the formation of hard b-Al5 Fe Si platelets in the matrix. In spite of hardness improvement by these microstructural changes, the resistance of the composite against dry sliding wear was impaired. SEM examination of the worn surfaces, wear debris, and subsurface regions confirmed the negative effect of b-phase on the tribological properties. It was found that b-particles were fractured easily, thereby decreasing the potential of the substrate to resist against sliding stresses and giving rise to the instability and easy detachment of tribolayer as large delaminated debris. The friction results also revealed that Fe slightly decreased the average friction coefficient, but increased the fluctuation in friction.
文摘The dry sliding wear behavior of AA6061/ZrB2 in-situ composite prepared by the reaction of inorganic salts K2ZrF6 and KBF4 with molten aluminum was investigated.An attempt was made to develop a mathematical model to predict the wear rate of AA6061/(0-10%) ZrB2 in-situ composites.Four-factor,five-level central composite rotatable design was used to minimize the number of experiments.The factors considered are sliding velocity,sliding distance,normal load and mass fraction of ZrB2 particles.The effect of these factors on the wear rate of the fabricated composite was analyzed and the predicted trends were discussed by observing the wear surface morphologies.The in-situ formed ZrB2 particles enhance the wear performance of the composite.The wear rate of the composite bears a proportional relationship with the sliding velocity,sliding distance and normal load.
基金Projects(11272072,11672055)supported by the National Natural Science Foundation of China
文摘Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribometer.Friction coefficients and wear rates were measured within a load range of 200-1000 N at a spindle rotary speed of 380 r/min.Worn surface morphologies,phase and element compositions were studied by scanning electron microscope(SEM),X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS),respectively.The mechanism of synergistic effect of CNTs and SiC nanoparticles was discussed.The results indicate that the AZ91D nanocomposites show better wear resistance properties and different wear mechanisms compared with AZ91D.The AZ91D nanocomposites reinforced with 0.5%CNTs and 0.5%nano-SiC have the best tribological capacity.The wear mechanisms for the Mg-based hybrid nanocomposites appear to be a mix-up of micro-ploughing,micro-cutting,slight adhesive wear and delamination.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.
文摘The effect of brake oil on sliding behavior of carbon/carbon(C/C) and carbon/carbon-silicon carbide(C/C-SiC) composites was investigated with the variation of laminate orientation and surface conformity. The partial and low conformity contacts with the normal and parallel orientations of laminates were considered. The normal load was varied from 50 to 90 N in a step of 10 N. The friction and wear behavior was investigated under reciprocating sliding conditions. The results showed that friction coefficient and wear loss of composites with normal orientation of laminates were larger as compared to those of composites with parallel orientation of laminates. C/C composites with normal orientation of laminates yielded the highest value of friction coefficient. Wear loss decreased by a maximum of 78%, and friction coefficient decreased by a maximum of 49% in low conformity contacts as compared to partial conformity contacts. The presence of brake oil reduced the adhesion tendency of compacted wear debris because the formation of friction film was difficult, and thus, friction behavior was affected. The wear debris retention between the contact surfaces due to confined area motion in reciprocating sliding depicted the tribological behavior.
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.