Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel...GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility.展开更多
The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was emplo...The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient ...50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.展开更多
This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an eq...This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.展开更多
Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired te...Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired temperatures of 1 400,1 500 and 1 600°C for 4 h were characterized by X-ray diffractometry and scanning electronic microscopy,respectively.The influences of sintering temperature on shrinkage ratio,apparent porosity and bulk density of the synthesized composite were investigated.The formation process of the composites was discussed in detail.The results show that the zirconia-mullite-corundum composites with good sintering properties can be prepared at 1 600°C for 4 h.Zirconia particles can be homogeneously distributed in mullite matrix,and the zirconia particles are around 5μm.The formation process of zirconia-mullite-corundum composites consists of decomposition of zircon and mullitization process.展开更多
The cenosphere dispersed Ti matrix composite was fabricated by powder metallurgy route, and its wear and corrosion behaviors were investigated. The results show that the microstructure of the fabricated composite cons...The cenosphere dispersed Ti matrix composite was fabricated by powder metallurgy route, and its wear and corrosion behaviors were investigated. The results show that the microstructure of the fabricated composite consists of dispersion of hollow cenosphere particles in a-Ti matrix. The average pore diameter varies from 50 to 150 μm. The presence of porosities is attributed to the damage of cenosphere particles due to the application of load during compaction as well as to the hollow nature of cenospheres. A detailed X-ray diffraction profile of the composites shows the presence of Al2O3, SiO2, TiO2 and α-Ti. The average microhardness of the composite (matrix) varies from HV 1100 to HV 1800 as compared with HV 240 of the as-received substrate. Wear studies show a significant enhancement in wear resistance against hardened steel ball and WC ball compared with that of commercially available Ti-6Al-4V alloy. The wear mechanism was established and presented in detail. The corrosion behavior of the composites in 3.56% NaCl (mass fraction) solution shows that corrosion potential (φcorr) shifts towards nobler direction with improvement in pitting corrosion resistance. However, corrosion rate of the cenosphere dispersed Ti matrix composite increases compared with that of the commercially available Ti-6Al-4V alloy.展开更多
A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing proc...A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.展开更多
To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanica...To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.展开更多
This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,...This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.展开更多
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
文摘GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility.
基金This work was supported by the National Council for Science and Technology CONACYT(Mihalcea PhD scholarship 473734 and Dr.Chávez postdoctoral fellow 000614)The authors would like to thank the CIC of the UMSNH and the National Laboratory SEDEAM-CONACYT for the financial support and the facilities provided for the development of this study.We would also like to thank the Laboratory“LUMIR”Geosciences of the UNAM,Juriquilla,for the 3D image acquisition and processing.
文摘The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金Project(2014DFA50860) supported by the International Science & Technology Cooperation Program of Ministry of Science and Technology of China
文摘50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.
基金The Mexican Council of Science and Technology (CONACYT) for the support received under the scholarship (449474)
文摘This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.
基金Project(N100302002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100471467)supported by the China Postdoctoral Science Foundation
文摘Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired temperatures of 1 400,1 500 and 1 600°C for 4 h were characterized by X-ray diffractometry and scanning electronic microscopy,respectively.The influences of sintering temperature on shrinkage ratio,apparent porosity and bulk density of the synthesized composite were investigated.The formation process of the composites was discussed in detail.The results show that the zirconia-mullite-corundum composites with good sintering properties can be prepared at 1 600°C for 4 h.Zirconia particles can be homogeneously distributed in mullite matrix,and the zirconia particles are around 5μm.The formation process of zirconia-mullite-corundum composites consists of decomposition of zircon and mullitization process.
基金Financial supports from various funding agencies Tata Steel, Jamshedpur, Department of Science and Technology, New Delhi, Council of Scientific and Industrial Research, New Delhi and Board of Research on Nuclear Science, Bombay for the present study are gratefully acknowledged
文摘The cenosphere dispersed Ti matrix composite was fabricated by powder metallurgy route, and its wear and corrosion behaviors were investigated. The results show that the microstructure of the fabricated composite consists of dispersion of hollow cenosphere particles in a-Ti matrix. The average pore diameter varies from 50 to 150 μm. The presence of porosities is attributed to the damage of cenosphere particles due to the application of load during compaction as well as to the hollow nature of cenospheres. A detailed X-ray diffraction profile of the composites shows the presence of Al2O3, SiO2, TiO2 and α-Ti. The average microhardness of the composite (matrix) varies from HV 1100 to HV 1800 as compared with HV 240 of the as-received substrate. Wear studies show a significant enhancement in wear resistance against hardened steel ball and WC ball compared with that of commercially available Ti-6Al-4V alloy. The wear mechanism was established and presented in detail. The corrosion behavior of the composites in 3.56% NaCl (mass fraction) solution shows that corrosion potential (φcorr) shifts towards nobler direction with improvement in pitting corrosion resistance. However, corrosion rate of the cenosphere dispersed Ti matrix composite increases compared with that of the commercially available Ti-6Al-4V alloy.
基金Project supported by Pusan National University Research GrantProject(2010-0008-276) supported by National Core Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.
基金Project(31160262)supported by the National Natural Science Foundation of ChinaProject(2013DH012)supported by the Innovation Platform Construction Project of Science and Technology of Yunnan Province,China
文摘To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.
基金Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, NRF and DHET for providing financial aid to this project
文摘This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.