通过调整WC颗粒尺寸(50μm和100μm)和质量分数(25%、35%和45%),采用新型的复合电冶熔铸工艺制备了4种WC颗粒增强钢基复合材料,以及作为对比的5Cr Ni Mo钢,对经过不同热处理的复合材料进行干滑动摩擦磨损试验,研究了各试样的摩擦因数和...通过调整WC颗粒尺寸(50μm和100μm)和质量分数(25%、35%和45%),采用新型的复合电冶熔铸工艺制备了4种WC颗粒增强钢基复合材料,以及作为对比的5Cr Ni Mo钢,对经过不同热处理的复合材料进行干滑动摩擦磨损试验,研究了各试样的摩擦因数和磨损量,并对磨损形貌进行分析。结果表明:随着WC含量或颗粒度在一定范围内增大,摩擦因数呈提高的趋势。在1000℃淬火+180℃回火,粗颗粒的WC含量为45%时,复合材料表现出最佳的耐磨性,是5Cr Ni Mo钢的21.96倍,是粗颗粒含量25%和35%时的10.65倍和8.91倍,是细颗粒含量45%时的5.35倍。PRMMC在干滑动摩擦磨损条件下的磨损机制为磨粒磨损和氧化磨损。展开更多
The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In additi...The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.展开更多
Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size...Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.展开更多
Microstructure and mechanical properties of ADC12 composites reinforced with graphene nanoplates(GNPs)prepared by high-intensity ultrasonic assisted casting were investigated.The results indicated that high-intensity ...Microstructure and mechanical properties of ADC12 composites reinforced with graphene nanoplates(GNPs)prepared by high-intensity ultrasonic assisted casting were investigated.The results indicated that high-intensity ultrasound can promote the uniform distribution of GNPs in the melt,resulting in refining theα(Al)phase and Si phase.The optimal addition of GNPs was 0.9 wt.%,and the optimal ultrasonic time was 12 min.The tensile strength,the yield strength and the hardness of the composite produced under the optimal parameters were 256.8 MPa,210.6 MPa and HV 126.0,respectively,which increased by 30.5%,42.7%,and 34.8%compared with those of the matrix,respectively.After adding the GNPs,the fracture mechanism gradually turned from a brittle fracture to a ductile fracture.The good interface and distribution allowed GNPs to play the role in fine grain strengthening,dislocation strengthening and load transfer strengthening effectively.展开更多
文摘通过调整WC颗粒尺寸(50μm和100μm)和质量分数(25%、35%和45%),采用新型的复合电冶熔铸工艺制备了4种WC颗粒增强钢基复合材料,以及作为对比的5Cr Ni Mo钢,对经过不同热处理的复合材料进行干滑动摩擦磨损试验,研究了各试样的摩擦因数和磨损量,并对磨损形貌进行分析。结果表明:随着WC含量或颗粒度在一定范围内增大,摩擦因数呈提高的趋势。在1000℃淬火+180℃回火,粗颗粒的WC含量为45%时,复合材料表现出最佳的耐磨性,是5Cr Ni Mo钢的21.96倍,是粗颗粒含量25%和35%时的10.65倍和8.91倍,是细颗粒含量45%时的5.35倍。PRMMC在干滑动摩擦磨损条件下的磨损机制为磨粒磨损和氧化磨损。
基金Project(USCAST2012-15) supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace TechnologyProject(B type,14QB1403200) supported by the Shanghai Rising-Star Program,China+1 种基金Projects(20120073120011,20130073110052) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(IPP9084) supported by IPP program in SJTU,China
文摘The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.
基金Yildiz Technical University and Balkan Center for Advanced Casting Technologies (BCACT) for their financial support
文摘Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘Microstructure and mechanical properties of ADC12 composites reinforced with graphene nanoplates(GNPs)prepared by high-intensity ultrasonic assisted casting were investigated.The results indicated that high-intensity ultrasound can promote the uniform distribution of GNPs in the melt,resulting in refining theα(Al)phase and Si phase.The optimal addition of GNPs was 0.9 wt.%,and the optimal ultrasonic time was 12 min.The tensile strength,the yield strength and the hardness of the composite produced under the optimal parameters were 256.8 MPa,210.6 MPa and HV 126.0,respectively,which increased by 30.5%,42.7%,and 34.8%compared with those of the matrix,respectively.After adding the GNPs,the fracture mechanism gradually turned from a brittle fracture to a ductile fracture.The good interface and distribution allowed GNPs to play the role in fine grain strengthening,dislocation strengthening and load transfer strengthening effectively.