The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and sc...The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and scaning electron microscopy (SEM). Results showed that the presence Si-CH3 group occurred on bagasse surface after chemical modification. In addition, the roughness of the modified bagasse was higher than that of unmodified bagasse due to chemical modification from sodium hydroxide. Two polymer composite types, namely (1) natural rubber NR/sugar cane bagasse and (2) NR/plaster via two-roll mill method, were prepared. The optimum cure (t90) and torque of the NR/plaster increased with increasing plaster loading in composite. In case of NR/bagasse, the tgo of this sample decreased as a function of sugar cane bagasse while torque of this sample increased with increasing sugar cane bagasse. The modulus of the resulting composite increased with increasing both plaster and sugar cane bagasse, but the tensile strength and elongation at break of the composite decreased as a function of both piaster and sugar cane bagasse in composite.展开更多
The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the differen...The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the different initial concentrations of urea or calcined at different temperatures had been investigated by X-ray diffration (XRD) or transmission electron microscopy (TEM). The calcination temperature had obvious effect on the phase composition and the crystal size of the samples attained, and the precipitant concentration also had obvious effect on the oxide particles size and the production rate of ZnO.展开更多
This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atm...This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atmospheres were varied: one is being composed with argon gas and another constituted with a balancing nitrogen and hydrogen. Atmospheres vary with the amount of production and the type of equipment used. The compound generated is used in the manufacture of rings for mechanical seals and is currently manufactured by the sintering process in passing furnace. The sintering was performed in a static furnace with argon atmosphere and compared with the same compound sintered in passage furnace with hydrogen and nitrogen atmosphere. The analysis of the properties of the tested material was performed with the aid of metallography using a scanning electron microscope, which verified the particle size distribution, chemical elements and pores present. Brinell hardness and Vickers micro hardness tests were also used to analyze the properties of this material after completion of the two processes. Thus, the research carried out has shown that variations may occur in the mechanical properties when processed in different furnace types and different sintering atmospheres.展开更多
文摘The sugar cane bagasse was treated with chemical treatment including sodium hydroxide and silane. The characterization of the modified bagasse was achieved with Fourier transform infrared spectroscopy (FTIR), and scaning electron microscopy (SEM). Results showed that the presence Si-CH3 group occurred on bagasse surface after chemical modification. In addition, the roughness of the modified bagasse was higher than that of unmodified bagasse due to chemical modification from sodium hydroxide. Two polymer composite types, namely (1) natural rubber NR/sugar cane bagasse and (2) NR/plaster via two-roll mill method, were prepared. The optimum cure (t90) and torque of the NR/plaster increased with increasing plaster loading in composite. In case of NR/bagasse, the tgo of this sample decreased as a function of sugar cane bagasse while torque of this sample increased with increasing sugar cane bagasse. The modulus of the resulting composite increased with increasing both plaster and sugar cane bagasse, but the tensile strength and elongation at break of the composite decreased as a function of both piaster and sugar cane bagasse in composite.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 20673042), the Natural Science Foundation of Anhui Provincial Education Committee (No. K12007B014), the Natural Science Foundation of Anhui Province (No. 070415211), China Postdoctoral Science Foundation (No. 2004036511), the Laboratory Open Foundation of Green Materials Chemistry (No. KLSF(I)09), and the Laboratory Open Foundation of Guangdong Public Laboratory of Environmental Science and Technology. The authors thank Mr. LUO S. M., Mr. CHEN D. Z., and Mr. TAO Q. for their assistance.
文摘The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the different initial concentrations of urea or calcined at different temperatures had been investigated by X-ray diffration (XRD) or transmission electron microscopy (TEM). The calcination temperature had obvious effect on the phase composition and the crystal size of the samples attained, and the precipitant concentration also had obvious effect on the oxide particles size and the production rate of ZnO.
文摘This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atmospheres were varied: one is being composed with argon gas and another constituted with a balancing nitrogen and hydrogen. Atmospheres vary with the amount of production and the type of equipment used. The compound generated is used in the manufacture of rings for mechanical seals and is currently manufactured by the sintering process in passing furnace. The sintering was performed in a static furnace with argon atmosphere and compared with the same compound sintered in passage furnace with hydrogen and nitrogen atmosphere. The analysis of the properties of the tested material was performed with the aid of metallography using a scanning electron microscope, which verified the particle size distribution, chemical elements and pores present. Brinell hardness and Vickers micro hardness tests were also used to analyze the properties of this material after completion of the two processes. Thus, the research carried out has shown that variations may occur in the mechanical properties when processed in different furnace types and different sintering atmospheres.