Ti-based scaffolds reinforced with zirconia and hydroxyapatite were produced successfully by a hybrid method with an eco-friendliness and low cost to obtain low elastic modulus(E) with sufficient physical, electrochem...Ti-based scaffolds reinforced with zirconia and hydroxyapatite were produced successfully by a hybrid method with an eco-friendliness and low cost to obtain low elastic modulus(E) with sufficient physical, electrochemical and biological properties. The effect of simultaneous modification of the volume fraction of hydroxyapatite(HA) and zirconia(ZrO_(2)) on scaffolds was investigated in terms of mechanical, corrosive, and antibacterial properties. Scanning electron microscopy with attached electron dispersive spectroscopy and X-ray diffraction were used for the characterization of scaffolds. Compression and electrochemical tests were performed to determine mechanical properties with detailed fracture mechanism and in-vitro corrosion susceptibility to simulated body fluid at 37 ℃,respectively. Antibacterial tests were carried out by comparing the inhibition areas of E.coli and S.aureus bacteria. It was observed that the mechanical strength of the scaffolds decreased with increasing HA:ZrO_(2)volume fraction ratio.The lowest E was achieved(6.61 GPa) in 6:4 HA:ZrO_(2)composite scaffolds. Corrosion current density(J_(corr)) values were calculated to be 21, 337, and 504 μ A/cm^(2) for unreinforced Ti, 3:2 and 6:4 HA:ZrO_(2)reinforced scaffolds,respectively. The inhibition capacity of the 6:4 reinforced composite scaffold was found to be more effective against S.aureus bacteria than other scaffolds.展开更多
High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,wit...High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,with the two-dimensional carboxylated zinc phthalocyanine-carboxylated C60-titanium dioxide(Zn Pc-C3-Ti O2)nanosheets,in which the surface modifications of Zn Pc and C60derivative were designed to extend the absorption range and promote charge separation,respectively.Benefiting from the unique structure and positive synergetic effect,the Zn Pc-C3-Ti O2 nanocomposite shows promising applications in selective reduction of nitroarenes for high-value-added aromatic amines under solar light.Especially,for the photocatalytic reduction of nitrobenzene to aniline,the Zn Pc-C3-Ti O2 nanocomposite possesses both high efficiency and selectivity(up to 99%).展开更多
基金the financial supports from the Research Fund of Atatürk University, Turkey (No. FDK-2019-7281)。
文摘Ti-based scaffolds reinforced with zirconia and hydroxyapatite were produced successfully by a hybrid method with an eco-friendliness and low cost to obtain low elastic modulus(E) with sufficient physical, electrochemical and biological properties. The effect of simultaneous modification of the volume fraction of hydroxyapatite(HA) and zirconia(ZrO_(2)) on scaffolds was investigated in terms of mechanical, corrosive, and antibacterial properties. Scanning electron microscopy with attached electron dispersive spectroscopy and X-ray diffraction were used for the characterization of scaffolds. Compression and electrochemical tests were performed to determine mechanical properties with detailed fracture mechanism and in-vitro corrosion susceptibility to simulated body fluid at 37 ℃,respectively. Antibacterial tests were carried out by comparing the inhibition areas of E.coli and S.aureus bacteria. It was observed that the mechanical strength of the scaffolds decreased with increasing HA:ZrO_(2)volume fraction ratio.The lowest E was achieved(6.61 GPa) in 6:4 HA:ZrO_(2)composite scaffolds. Corrosion current density(J_(corr)) values were calculated to be 21, 337, and 504 μ A/cm^(2) for unreinforced Ti, 3:2 and 6:4 HA:ZrO_(2)reinforced scaffolds,respectively. The inhibition capacity of the 6:4 reinforced composite scaffold was found to be more effective against S.aureus bacteria than other scaffolds.
基金supported by Beijing Natural Science Foundation(2182094)the National Natural Science Foundation of China(51772300 and 51832008)the Youth Innovation Promotion Association of CAS(2018039)。
文摘High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,with the two-dimensional carboxylated zinc phthalocyanine-carboxylated C60-titanium dioxide(Zn Pc-C3-Ti O2)nanosheets,in which the surface modifications of Zn Pc and C60derivative were designed to extend the absorption range and promote charge separation,respectively.Benefiting from the unique structure and positive synergetic effect,the Zn Pc-C3-Ti O2 nanocomposite shows promising applications in selective reduction of nitroarenes for high-value-added aromatic amines under solar light.Especially,for the photocatalytic reduction of nitrobenzene to aniline,the Zn Pc-C3-Ti O2 nanocomposite possesses both high efficiency and selectivity(up to 99%).