Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost target...Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost targets for CO2 capture. This study attempts to develop membranes with multiple permselective mechanisms in order to enhance CO2 separation performance of fixed carder membrane. In this study, a novel membrane with multiplepermselective mechanisms of solubility selectivity and reaction selectivity was developed by incorporating CO2-selective adsorptive silica nanoparticles in situ into the tertiary amine containing polyamide membrane formed by interfacial polymerization (IP). Various techniques were employed to characterize the polyamide and polyam-ide-silica composite membranes. The TGA result shows that nanocomposite membranes exhlbit superior-thermal stability than pure polyamide membranes. In addition, gas permeation experiments show that both nanocomposite membranes have larger CO2 permeance than pure polyamide membranes. The enhanced CO2/N2 separation performance for nanocomposite membranes is mainly due to the thin film thickness, and multiple permselective mechanisms of solubility selectivity and reaction selectivity.展开更多
SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed ...SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed by heat-treatment. This membrane was characterized by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy) and BET (Brunauer-Emmett-Teller) instruments. Hydrogen permeation test was conducted at 0.1 MPa pressure and also variation of temperatures. The obtained value of heat-treated membrane after dip-coating at 298 K was obtained as 1.61 × 10-6 mol/(m2·s·Pa).展开更多
The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as ga...The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as gas sensors for toluene-sensing application.Compared with the bilayer thin film sensor,the sensor with three-layer thin films exhibited higher response values and better recovery property.The microstructures of sensing films were characterized by scanning electron microscopy(SEM) to indicate that the better sensing response of three-layer thin films might be ascribed to the sufficient adsorption of toluene molecules on the surfaces of upper and bottom PEO films.The selectivity of the three-layer film sensor was further investigated by comparing responses upon exposure to different interference vapors with the response to toluene exposure,and much higher response was observed in the case of toluene.Good repeatability of the three-layer film sensor was also observed.展开更多
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
基金Supported by the National Natural Science Foundation of China (20836006), the National Basic Research Program (2009CB623405), the Science & Technology Pillar Program of Tianjin (10ZCKFSH01700), the Programme of Introducing Talents of Discipline to Universities (B06006), and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (IRT0641).
文摘Fixed carrier membrane exhibits attractive CO2 permeance and selectivity due to its transport mechanism of reaction selectivity (facilitated transport). However, its performance needs improvement to meet cost targets for CO2 capture. This study attempts to develop membranes with multiple permselective mechanisms in order to enhance CO2 separation performance of fixed carder membrane. In this study, a novel membrane with multiplepermselective mechanisms of solubility selectivity and reaction selectivity was developed by incorporating CO2-selective adsorptive silica nanoparticles in situ into the tertiary amine containing polyamide membrane formed by interfacial polymerization (IP). Various techniques were employed to characterize the polyamide and polyam-ide-silica composite membranes. The TGA result shows that nanocomposite membranes exhlbit superior-thermal stability than pure polyamide membranes. In addition, gas permeation experiments show that both nanocomposite membranes have larger CO2 permeance than pure polyamide membranes. The enhanced CO2/N2 separation performance for nanocomposite membranes is mainly due to the thin film thickness, and multiple permselective mechanisms of solubility selectivity and reaction selectivity.
文摘SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed by heat-treatment. This membrane was characterized by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy) and BET (Brunauer-Emmett-Teller) instruments. Hydrogen permeation test was conducted at 0.1 MPa pressure and also variation of temperatures. The obtained value of heat-treated membrane after dip-coating at 298 K was obtained as 1.61 × 10-6 mol/(m2·s·Pa).
基金supported by the National Natural Science Foundation of China(Grant Nos.61176066 and 61101031)
文摘The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as gas sensors for toluene-sensing application.Compared with the bilayer thin film sensor,the sensor with three-layer thin films exhibited higher response values and better recovery property.The microstructures of sensing films were characterized by scanning electron microscopy(SEM) to indicate that the better sensing response of three-layer thin films might be ascribed to the sufficient adsorption of toluene molecules on the surfaces of upper and bottom PEO films.The selectivity of the three-layer film sensor was further investigated by comparing responses upon exposure to different interference vapors with the response to toluene exposure,and much higher response was observed in the case of toluene.Good repeatability of the three-layer film sensor was also observed.