Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and super...Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.展开更多
The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained struc...The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6%SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2.g-1 and 0.28 cm3.g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 min under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.展开更多
Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites ...Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.展开更多
Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid org...Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid organic-inorganic phenolic resins modified with either silica nanoparticles or boron were used to design a thin insulating layer perfect- ly covering the ferromagnetic particles. Fourier transform infrared (FTIR) spectrometry confirmed an incorporation of silica or boron into the polymer matrix, which manifested itself through an improved thermal stability of the hybrid resins verified by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The core-shell particles prepared from the ferromagnetic powder particles and the modified hybrid resins were further compacted to the cylindrical and toroidal shapes for the mechanical, electrical and magnetic testing. A uniform distribution of the resin between the ferromagnetic particles was evidenced by scanning electron microscope (SEM) analysis, which was also reflected in a rather high value of the electrical resistivity. A low porosity and extraordinary high values of mechanical hardness and flexural strength were found in SMC consisting of the iron powder and phenolic resin modified with boron. The coercive fields of the prepared samples were comparable with the commercial SMCs.展开更多
Four 3d-4f heterometallic complexes, [CuⅡ-LnⅢ(bpt)2(NO3)3(MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-l,2,4- triazole), [CuⅡ-LnⅢ(μ-OH)2(bpt)4C14 (H2O)2]·6H2O (Ln = Gd, 3; Dy, 4), have been synthesi...Four 3d-4f heterometallic complexes, [CuⅡ-LnⅢ(bpt)2(NO3)3(MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-l,2,4- triazole), [CuⅡ-LnⅢ(μ-OH)2(bpt)4C14 (H2O)2]·6H2O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal condi- tions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ-LnⅢ dinuclear unit. The intramolecu- lar Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 ] for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {cunzLnm2} structures with the Ln(Ⅲ)...Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CulI-Lnm interactions occur in 1 (Jcu = -0,21 cm-1) and 2. The antiferromagnetic interaction occurs in complex 3 with JcuGa = -0.82 cm-1 and JcdGd = --0.065 cm-1, while domi- nant ferromagnetic interaction occurs in complex 4.展开更多
A new process to produce magnetite partially coated with strawberry-like gold nanoparticles in aqueous media is reported. The fast response to magnetic fields and optical properties of gold nanoparticle-based colloida...A new process to produce magnetite partially coated with strawberry-like gold nanoparticles in aqueous media is reported. The fast response to magnetic fields and optical properties of gold nanoparticle-based colloidal systems are the two main advantages of this new Fe@Au nanomaterial. These advantages allow for the use of this new colloidal nanomaterial for various purposes in proteomics and biomedicine, as proteins can bind to the surface, and the surface can also be funcfionalized. As proof-of-concept, the new Fe@Au nanoparticles have been assessed in biomarker discovery as a tool for pre-concentration and separation of proteins from complex proteomes. To this end, sera from healthy people were compared with sera from patients diagnosed with multiple myeloma. The application of this new Fe@Au nanomaterial combined with mass spectrometry has allowed for the identification of 53 proteins, and it has also shown that the heat shock protein HSP75 and the plasma protease C1 inhibitor are potential biomarkers for diagnostics and control of multilvle mveloma vro^ression.展开更多
Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanoc...Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.展开更多
Two helical one-dimensional complexes [Mnn(MeOH)4][MnlV(L)2]·2MeOH (1) and [Mnm(salen)][Mnm(L)2] (2) (H2L = HON=C(Ph)N=NC6HaCO2H) contain the noninnocent ligand [Mn(L)2]2- and innocent low-spin ...Two helical one-dimensional complexes [Mnn(MeOH)4][MnlV(L)2]·2MeOH (1) and [Mnm(salen)][Mnm(L)2] (2) (H2L = HON=C(Ph)N=NC6HaCO2H) contain the noninnocent ligand [Mn(L)2]2- and innocent low-spin [Mn(L)2]-. Intrachain anti- ferromagnetic interaction between adjacent manganese syn-anti and anti-anti carboxylate bridges have been high-spin and low-spin Mn(llI) ions in complex 2. ions via the syn-anti carboxylate bridges in complex 1. Alternate found to transmit ferro- and antiferromagnetic coupling between展开更多
The inverted triplesalen ligand H6feldMe has been synthesized from 2,4,6-triformyl-phloroglucinol and a ketimine salen half-unit in a convergent synthesis. NMR, IR, and UV-vis spectroscopy reveal that this ligand is n...The inverted triplesalen ligand H6feldMe has been synthesized from 2,4,6-triformyl-phloroglucinol and a ketimine salen half-unit in a convergent synthesis. NMR, IR, and UV-vis spectroscopy reveal that this ligand is not in the O-protonated tau- tomer but in the N-protonated tautomer with substantial heteroradialene contribution. This ligand and the conventional triple- salen ligand H6talent-au2 have been used to synthesize the trinuclear Fem complexes [(feldMe)(FeCl)3] and [(talent-Bu2)(FeC1)3], respectively. The molecular structures of these complexes were obtained by single-crystal X-ray diffraction. Two trinuclear Fem complexes of [(feldMe)(FeCl)3] dimerize via two Fe-phenolate bonds, whereas due to steric hindrance no dimerization is observed for [(talent-Bu2)(FeC1)3]. The structural data also reveal some heteroradialene contribution in the trinuclear complexes. Whereas UV-vis and MOlSbauer spectroscopy are not suitable to distinguish between the two complexes, FT-IR spectra show characteristic features due to the different substitution patterns of the conventional and the inverted triplesalen ligands. Another handle is provided by electrochemistry. Whereas both complexes exhibit an irreversible oxidation wave (0.94 V vs. Fc+/Fc for [(feldMe)(FeC1)3] and 0.84 V vs. Fc~/Fc for [(talent-Bu2)(FeC1)3]), which is assigned to the oxidation of the central backbone, higher potential oxidations are reversible for [(talent-Bu2)(FeC1)3]) but irreversible for [(feldMe)(FeC1)3]. This is attributed to the reversible oxidation of the terminal phenolates in the di-tert-butyl substituted [(talentBu2)(FeCl)3] in contrast to the mono-methyl-substituted phenolates in [(feld^ae)(FeC1)3]. The magnetic properties of [(talen^-Bu2)(FeC1)3] reveal a very small ferromagnetic coupling with significant zero-field splitting of the Feul S = 5/2 ions. In contrast, the dimerization of two trinu- clear complexes in [(feldMe)(FeCl)3] results in antiferromagnetic interactions between the two phenolate-bridged FeIII ions, which mask the intra-trinuclear interactions transmitted by the central phloroglucinol backbone.展开更多
The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries wi...The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.展开更多
基金Project(2016YFE0205700)supported by the National Key Research and Development Program of ChinaProject(18JCYBJC18000)supported by the Natural Science Foundation of Tianjin City,China。
文摘Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.
基金Supported by the National Natural Science Foundation of China(21173018,20473009)
文摘The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6%SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2.g-1 and 0.28 cm3.g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 min under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.
基金Project(RP021-2012C)supported by University of Malaya under the UMRG Fund,Malaysia
文摘Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.
基金Supported by the Slovak Research and Development Agency under the contracts(APVV-0222-10)the Operational Program"Research and Development"financed through European Regional Development Fund(ITMS 26220220105)the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences,projects(VEGA 1/0861/12,VEGA 1/0862/12,VEGA VEGA 2/0155/12)
文摘Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid organic-inorganic phenolic resins modified with either silica nanoparticles or boron were used to design a thin insulating layer perfect- ly covering the ferromagnetic particles. Fourier transform infrared (FTIR) spectrometry confirmed an incorporation of silica or boron into the polymer matrix, which manifested itself through an improved thermal stability of the hybrid resins verified by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The core-shell particles prepared from the ferromagnetic powder particles and the modified hybrid resins were further compacted to the cylindrical and toroidal shapes for the mechanical, electrical and magnetic testing. A uniform distribution of the resin between the ferromagnetic particles was evidenced by scanning electron microscope (SEM) analysis, which was also reflected in a rather high value of the electrical resistivity. A low porosity and extraordinary high values of mechanical hardness and flexural strength were found in SMC consisting of the iron powder and phenolic resin modified with boron. The coercive fields of the prepared samples were comparable with the commercial SMCs.
基金supported by the National Natural Science Foundation of China (91122032, 90922009, 21121061)the National Basic Research Program of China (2012CB821704)
文摘Four 3d-4f heterometallic complexes, [CuⅡ-LnⅢ(bpt)2(NO3)3(MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-l,2,4- triazole), [CuⅡ-LnⅢ(μ-OH)2(bpt)4C14 (H2O)2]·6H2O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal condi- tions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ-LnⅢ dinuclear unit. The intramolecu- lar Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 ] for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {cunzLnm2} structures with the Ln(Ⅲ)...Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CulI-Lnm interactions occur in 1 (Jcu = -0,21 cm-1) and 2. The antiferromagnetic interaction occurs in complex 3 with JcuGa = -0.82 cm-1 and JcdGd = --0.065 cm-1, while domi- nant ferromagnetic interaction occurs in complex 4.
文摘A new process to produce magnetite partially coated with strawberry-like gold nanoparticles in aqueous media is reported. The fast response to magnetic fields and optical properties of gold nanoparticle-based colloidal systems are the two main advantages of this new Fe@Au nanomaterial. These advantages allow for the use of this new colloidal nanomaterial for various purposes in proteomics and biomedicine, as proteins can bind to the surface, and the surface can also be funcfionalized. As proof-of-concept, the new Fe@Au nanoparticles have been assessed in biomarker discovery as a tool for pre-concentration and separation of proteins from complex proteomes. To this end, sera from healthy people were compared with sera from patients diagnosed with multiple myeloma. The application of this new Fe@Au nanomaterial combined with mass spectrometry has allowed for the identification of 53 proteins, and it has also shown that the heat shock protein HSP75 and the plasma protease C1 inhibitor are potential biomarkers for diagnostics and control of multilvle mveloma vro^ression.
基金supported by the National Basic Research Program of China(2013CB933903)the National Key Technology Research and Development Program(2012BAI23B08)+1 种基金the National Natural Science Foundation of China(51173117)the Scientific Research Start-up Fund of Kunming University of Science and Technology(KKSY201305089)
文摘Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.
基金supported by the National Natural Science Foundation of China (21171103, 20921001)
文摘Two helical one-dimensional complexes [Mnn(MeOH)4][MnlV(L)2]·2MeOH (1) and [Mnm(salen)][Mnm(L)2] (2) (H2L = HON=C(Ph)N=NC6HaCO2H) contain the noninnocent ligand [Mn(L)2]2- and innocent low-spin [Mn(L)2]-. Intrachain anti- ferromagnetic interaction between adjacent manganese syn-anti and anti-anti carboxylate bridges have been high-spin and low-spin Mn(llI) ions in complex 2. ions via the syn-anti carboxylate bridges in complex 1. Alternate found to transmit ferro- and antiferromagnetic coupling between
基金supported by the Deutsche Forschungsgemeinschaft(FOR945 ‘Nanomagnets: from Synthesis via Interactions with Surfaces to Function’)the Fonds der Chemischen IndustrieBielefeld University
文摘The inverted triplesalen ligand H6feldMe has been synthesized from 2,4,6-triformyl-phloroglucinol and a ketimine salen half-unit in a convergent synthesis. NMR, IR, and UV-vis spectroscopy reveal that this ligand is not in the O-protonated tau- tomer but in the N-protonated tautomer with substantial heteroradialene contribution. This ligand and the conventional triple- salen ligand H6talent-au2 have been used to synthesize the trinuclear Fem complexes [(feldMe)(FeCl)3] and [(talent-Bu2)(FeC1)3], respectively. The molecular structures of these complexes were obtained by single-crystal X-ray diffraction. Two trinuclear Fem complexes of [(feldMe)(FeCl)3] dimerize via two Fe-phenolate bonds, whereas due to steric hindrance no dimerization is observed for [(talent-Bu2)(FeC1)3]. The structural data also reveal some heteroradialene contribution in the trinuclear complexes. Whereas UV-vis and MOlSbauer spectroscopy are not suitable to distinguish between the two complexes, FT-IR spectra show characteristic features due to the different substitution patterns of the conventional and the inverted triplesalen ligands. Another handle is provided by electrochemistry. Whereas both complexes exhibit an irreversible oxidation wave (0.94 V vs. Fc+/Fc for [(feldMe)(FeC1)3] and 0.84 V vs. Fc~/Fc for [(talent-Bu2)(FeC1)3]), which is assigned to the oxidation of the central backbone, higher potential oxidations are reversible for [(talent-Bu2)(FeC1)3]) but irreversible for [(feldMe)(FeC1)3]. This is attributed to the reversible oxidation of the terminal phenolates in the di-tert-butyl substituted [(talentBu2)(FeCl)3] in contrast to the mono-methyl-substituted phenolates in [(feld^ae)(FeC1)3]. The magnetic properties of [(talen^-Bu2)(FeC1)3] reveal a very small ferromagnetic coupling with significant zero-field splitting of the Feul S = 5/2 ions. In contrast, the dimerization of two trinu- clear complexes in [(feldMe)(FeCl)3] results in antiferromagnetic interactions between the two phenolate-bridged FeIII ions, which mask the intra-trinuclear interactions transmitted by the central phloroglucinol backbone.
文摘The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.