Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of...Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites.展开更多
Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensi...Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensity factor (SIF) at the crack tip, the maximum tensile stress in the composite patch and the maximum shear stress in the adhesive bond between the patch and the plate. Without the patch, a tensile or compressive stress parallel to the crack has no effect on the SIF at the crack tip. While with a composite patch, there exists coupling effect between the normal stress parallel to the crack and the SIF, and the coupling effect depends significantly on ply orientation of the patch and the biaxial stress ratio of the plate.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five ...The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five damage modes.The cracking mode 3 contains transverse cracking,matrix cracking and fiber/matrix interface debonding.The cracking mode 5 only contains matrix cracking and fiber/matrix interface debonding.The cracking stress of modes 3 and 5 appearing between existing transverse cracks is determined.And the multiple matrix crack evolution of mode 3 is determined.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on the cracking stress and matrix crack evolution are analyzed.Results indicate that the cracking mode 3 is more likely to appear between transverse cracks for the SiC/CAS material.展开更多
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic...Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.展开更多
The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whisk...The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.展开更多
The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-...The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.展开更多
The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion,...The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface, or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.展开更多
基金Project(2011CB605804)supported by the National Basic Research Program of ChinaProject(51165006)supported by the National Natural Science Foundation of China+1 种基金Project(BY2013015-32)supported by Cooperative Innovation Fund-Prospective Project of Jiangsu Province,ChinaProject(JUSRP1045)supported by the Fundamental Research Funds for the Central Universities,China
文摘Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites.
文摘Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensity factor (SIF) at the crack tip, the maximum tensile stress in the composite patch and the maximum shear stress in the adhesive bond between the patch and the plate. Without the patch, a tensile or compressive stress parallel to the crack has no effect on the SIF at the crack tip. While with a composite patch, there exists coupling effect between the normal stress parallel to the crack and the SIF, and the coupling effect depends significantly on ply orientation of the patch and the biaxial stress ratio of the plate.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
基金Supported by the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five damage modes.The cracking mode 3 contains transverse cracking,matrix cracking and fiber/matrix interface debonding.The cracking mode 5 only contains matrix cracking and fiber/matrix interface debonding.The cracking stress of modes 3 and 5 appearing between existing transverse cracks is determined.And the multiple matrix crack evolution of mode 3 is determined.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on the cracking stress and matrix crack evolution are analyzed.Results indicate that the cracking mode 3 is more likely to appear between transverse cracks for the SiC/CAS material.
基金financially supported by the National Key R&D Program of China (No.2018YFA0707300)the Natural Science Foundation of Shanxi Province,China (No.201801D221131)+2 种基金the National Natural Science Foundation of China (Nos.51905372,51904206,51805359,52075359)Shanxi Province Science and Technology Major Project,China (No.20181102011)China Postdoctoral Science Foundation (No.2020M670705)。
文摘Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.
基金the Ministry of Education, Science, Sports and Culture of the Government of Japan for providing financial support during this research work
文摘The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.
基金Project(11972204) supported by the National Natural Science Foundation of China。
文摘The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.
文摘The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface, or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.