Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison....Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.展开更多
The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 part...The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.展开更多
The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and mi...The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and microstructure of composite were investigated by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD).The results show that the microstructure of electrodeposited layer transformed from bulk crystal to nano structure because of the participation of microcapsules.The diameters of microcapsules and the copper grain sizes in the composite were 2?20 μm and 10?20 nm,respectively.In addition,the electrodeposition mechanism of composite in the deposition process followed electrochemistry theory,which was proved by the theoretical analysis result and the experiment results.Meanwhile,the co-deposition process model was presented.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball...Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball-milled Si/Ni particles in the electrolyte on the silicon content, structure, microhardness and corrosion behaviors of the coatings were investigated. Scanning electron microscopy and X-ray diffractometry were used for structural characterization. Also, the microhardness and corrosion behaviors of the deposited coatings were evaluated. According to the results, the Si level reaches about 10 wt.% in the coating, which is a significant content of Si incorporation for electrodeposition. It was also found that the crystallite size of the coatings was progressively decreased and the hardness was increased, by increasing the content of Si. Typically, the crystallite size and microhardness of the Ni-10 wt.%Si coating were 0.39 and 2.1 times those of the pure Ni coating, respectively. Also, the results showed that there is an optimal content of Si to meet the best acidic corrosion resistance of the coatings.展开更多
The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was emplo...The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.展开更多
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w...Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.展开更多
An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness...An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness and structure of the conversion coatings.The results show that the continuous and uniform conversion coating is deposited on AZ91D alloy and the main component of the coatings is organic compound containing benzene ring,which forms a chemical bond with magnesium.The polarization measurement and salt spray test show that the corrosion resistance of the conversion coating is much higher than that of traditional chromate conversion coating.展开更多
Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strengt...Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strength. Tsai-Hill failure criterion as a limiting state function to analyze structural reliability of a composite laminate and estimation theory in order to estimate statistical parameters of effective stress were utilized to construct probability box. Finally, we used the Monte Carlo simulation and FERUM software to calculate the upper and lower bounds of probability of failure.展开更多
Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (sc...Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.展开更多
The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,w...The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.展开更多
A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjun...A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.展开更多
A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics...A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.展开更多
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(B08040)supported by Introducing Talents of Discipline to Universities,China
文摘Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.
文摘The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.
基金Project(50771010) supported by the National Natural Science Foundation of China
文摘The nanostructured copper/microcapsule containing liquid core materials composite(copper/liquid microcapsules composite) was prepared using direct current(DC) electrodeposition method.The surface morphology and microstructure of composite were investigated by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD).The results show that the microstructure of electrodeposited layer transformed from bulk crystal to nano structure because of the participation of microcapsules.The diameters of microcapsules and the copper grain sizes in the composite were 2?20 μm and 10?20 nm,respectively.In addition,the electrodeposition mechanism of composite in the deposition process followed electrochemistry theory,which was proved by the theoretical analysis result and the experiment results.Meanwhile,the co-deposition process model was presented.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
文摘Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball-milled Si/Ni particles in the electrolyte on the silicon content, structure, microhardness and corrosion behaviors of the coatings were investigated. Scanning electron microscopy and X-ray diffractometry were used for structural characterization. Also, the microhardness and corrosion behaviors of the deposited coatings were evaluated. According to the results, the Si level reaches about 10 wt.% in the coating, which is a significant content of Si incorporation for electrodeposition. It was also found that the crystallite size of the coatings was progressively decreased and the hardness was increased, by increasing the content of Si. Typically, the crystallite size and microhardness of the Ni-10 wt.%Si coating were 0.39 and 2.1 times those of the pure Ni coating, respectively. Also, the results showed that there is an optimal content of Si to meet the best acidic corrosion resistance of the coatings.
基金This work was supported by the National Council for Science and Technology CONACYT(Mihalcea PhD scholarship 473734 and Dr.Chávez postdoctoral fellow 000614)The authors would like to thank the CIC of the UMSNH and the National Laboratory SEDEAM-CONACYT for the financial support and the facilities provided for the development of this study.We would also like to thank the Laboratory“LUMIR”Geosciences of the UNAM,Juriquilla,for the 3D image acquisition and processing.
文摘The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.
文摘Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.
基金Project(50871046)supported by the National Natural Science Foundation of ChinaProject(2007KZ09)supported by the 2007 Scienceand Technology Support Plan of Changchun City,China
文摘An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness and structure of the conversion coatings.The results show that the continuous and uniform conversion coating is deposited on AZ91D alloy and the main component of the coatings is organic compound containing benzene ring,which forms a chemical bond with magnesium.The polarization measurement and salt spray test show that the corrosion resistance of the conversion coating is much higher than that of traditional chromate conversion coating.
文摘Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strength. Tsai-Hill failure criterion as a limiting state function to analyze structural reliability of a composite laminate and estimation theory in order to estimate statistical parameters of effective stress were utilized to construct probability box. Finally, we used the Monte Carlo simulation and FERUM software to calculate the upper and lower bounds of probability of failure.
文摘Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.
基金Project(2023JJ40759)supported by the Natural Science Foundation of Hunan Province,China。
文摘The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672027 and 90816025)the National Basic Research Program of China (Grant No. 2006CB601205)
文摘A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA030403)National Natural Science Foundation of China(Grant Nos.51032003,11274198,51102148,51221291)+2 种基金Shandong Natural Science Foundation(Grant No.ZR2010AM025)the China Postdoctoral Research Foundation(Grant No.2013M530042)the Research Fund for the Doctoral Program of Higher Education(Grant No.2010000612003)
文摘A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.