Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathod...Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiOx CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW-cm^-2) was demonstrated, which represents a record high value for inverted PSCs with TiOx-based interface materials.展开更多
文摘Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiOx CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW-cm^-2) was demonstrated, which represents a record high value for inverted PSCs with TiOx-based interface materials.