Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules accordi...In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be Mentified by different regions in the c-p parameter space.展开更多
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
基金The project supported by the State Key Basic Research Program of China under Grant No. 2006CB705500, National Natural Science Foundation of China under Grant No. 60634010, and the Science and Technology Foundation of Beijing Jiaotong University under Grant No. 2006RC044 and New Century Excellent Talents in University under Grant No. NCEF-06-0074
文摘In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be Mentified by different regions in the c-p parameter space.