ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
Geopolymers are inorganic adhesive synthesized from industrial waste such as fly ash thus the development of wood geopolymer composite would be a low carbon footprint material.Geopolymers,being a non-formaldehyde adhe...Geopolymers are inorganic adhesive synthesized from industrial waste such as fly ash thus the development of wood geopolymer composite would be a low carbon footprint material.Geopolymers,being a non-formaldehyde adhesive can be used as an alternative binder for wood based composites where environmentally friendly and sustainability of product is important.In this study flyash as precursor is been used in the development of wood geopolymer composite product.Flyash is activated with a combination of sodium hydroxide and sodium silicate solutions at a weight ratio of 1:2.5 for geopolymer formation.The study investigated the properties of wood geopolymer composite made with ratios of wood particle to flyash percentage(23/77),(37/62),(44/55),(50/50)and(57/43).Geopolymer formation was observed by X-ray Diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR).Influence of wood particles in wood geopolymer composite were observed by Scanning electron microscope.The study shows that the water absorption and thickness selling properties of all the formulations of wood geopolymer composites are comparable with the medium density particle board and cement-bonded particleboard according to the IS:3087-2005 standard and IS:12406:respectively.Highest mechanical properties and good bond strength was obtained by the composite containing 23%wood particle ratio with 77%percent flyash.However,still improvement in mechanical properties is needed to achieve the mechanical properties comparable to cement bonded particle board.展开更多
The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed...The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.展开更多
Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure an...Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.展开更多
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.
基金We thank Indian plywood Industries research and training Institute,an autonomous body of Ministry of environment forest and climate change funded this research project.I thank my co-authors for helping me in the study,analysis,and interpretation of data and in writing the manuscript should be declared.
文摘Geopolymers are inorganic adhesive synthesized from industrial waste such as fly ash thus the development of wood geopolymer composite would be a low carbon footprint material.Geopolymers,being a non-formaldehyde adhesive can be used as an alternative binder for wood based composites where environmentally friendly and sustainability of product is important.In this study flyash as precursor is been used in the development of wood geopolymer composite product.Flyash is activated with a combination of sodium hydroxide and sodium silicate solutions at a weight ratio of 1:2.5 for geopolymer formation.The study investigated the properties of wood geopolymer composite made with ratios of wood particle to flyash percentage(23/77),(37/62),(44/55),(50/50)and(57/43).Geopolymer formation was observed by X-ray Diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR).Influence of wood particles in wood geopolymer composite were observed by Scanning electron microscope.The study shows that the water absorption and thickness selling properties of all the formulations of wood geopolymer composites are comparable with the medium density particle board and cement-bonded particleboard according to the IS:3087-2005 standard and IS:12406:respectively.Highest mechanical properties and good bond strength was obtained by the composite containing 23%wood particle ratio with 77%percent flyash.However,still improvement in mechanical properties is needed to achieve the mechanical properties comparable to cement bonded particle board.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623106)the National Natural Science Foundation of China (Grant No. U1134008)
文摘The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.
基金supported by the National Natural Science Foundation of China (51273206, 51425307)
文摘Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.