期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
双金属同构金属-有机框架材料CAU-21-Al/M的合成、氮气吸附及复合膜性能 被引量:2
1
作者 张弛 孙福兴 朱广山 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2022年第1期87-92,共6页
通过掺杂金属的方式实现了双金属同构金属-有机框架材料的制备,采用X射线粉末衍射(PXRD)确定了多种金属在双金属CAU-21材料中的最大掺杂量,使用扫描电子显微镜(SEM)观察了掺杂金属对材料形貌的影响.热重分析(TGA)结果表明,CAU-21系列材... 通过掺杂金属的方式实现了双金属同构金属-有机框架材料的制备,采用X射线粉末衍射(PXRD)确定了多种金属在双金属CAU-21材料中的最大掺杂量,使用扫描电子显微镜(SEM)观察了掺杂金属对材料形貌的影响.热重分析(TGA)结果表明,CAU-21系列材料均具有较好的热稳定性.氮气气体吸附测试及以CAU-21-Al/M为填料的混合基质膜对N;气的渗透实验结果与掺杂金属离子尺寸大小呈相反的关系,证实了双金属可实现对孔道结构及气体吸附性能的调控. 展开更多
关键词 同构金属-有机框架材料 气体吸附 复合膜气体渗透
下载PDF
Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation 被引量:8
2
作者 刘赛男 刘公平 +2 位作者 卫旺 相里粉娟 金万勤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期348-356,共9页
Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ... Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases. 展开更多
关键词 POLYDIMETHYLSILOXANE PEGDA ceramic support composite membrane CO2 separation
下载PDF
Development of CO2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale 被引量:6
3
作者 Torsten Brinkmann Jelena Lilleparg +4 位作者 Heiko Notzke Jan Pohlmann Sergey Shishatskiy Jan Wind Thorsten Wolff 《Engineering》 SCIE EI 2017年第4期485-493,共9页
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustio... Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing. 展开更多
关键词 Gas permeation Thin-film composite membrane CO2 separation Carbon capture and storage Biogas processing Membrane modules
下载PDF
Permeation Characteristics of Light Hydrocarbons Through Poly(amide-6-β-ethylene oxide) Multilayer Composite Membranes 被引量:1
4
作者 任晓灵 任吉中 +1 位作者 李晖 邓麦村 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期232-237,共6页
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b... In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease. 展开更多
关键词 poly(amide-6-β-ethylene oxide) light hydrocarbons multilayer composite membrane TRANSPORT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部