Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on th...Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.展开更多
This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductiv...This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.展开更多
Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile...Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing -82 wt.% Ni(OH)2 exhibited a specific capacitance of -1,247 F/g at a scan rate of 5 mV/s and -785 F/g at 40 mV/s (-63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (-309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (-1,352 F/g at 5 mV/s) and rate capability (-66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (-43 and -47 Wh/kg, respectively) and power densities (-8 and -9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.展开更多
Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reac...Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.展开更多
Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions ...Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.展开更多
基金Project(2005CB623703) supported by the National Basic Research Program of China project(5JJ30103) supported bythe Natural Science Foundation of Hunan Province
文摘Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51077014, 21003028 and 51202043): the Fundamental Research funds for the Central Universities, the Program for New Century Excellent Talents in University (NCET-10-0050), and the Excellent Youth Foundation of Heilongjiang Province of China.
文摘This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.
文摘Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing -82 wt.% Ni(OH)2 exhibited a specific capacitance of -1,247 F/g at a scan rate of 5 mV/s and -785 F/g at 40 mV/s (-63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (-309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (-1,352 F/g at 5 mV/s) and rate capability (-66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (-43 and -47 Wh/kg, respectively) and power densities (-8 and -9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.
基金This work was supported by the "Thousands Talents" Program for Pioneer Researcher and His Innovation Team, China. This work was also supported by the National Natural Science Foundation of China (No.51374029), Program for New Century Excellent Talents in University (No. NCET-13-0668), Fundamental Research Funds for the Central Universities (No. FRF-TP-14-008C1) and China Postdoctoral Science Foundation (No. 2014M550675).
文摘Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.
基金supported by the National Natural Science Foundation of China (61376011)Gansu Provincial Natural Science Foundation of China (17JR5RA198)the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21)
文摘Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.