期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
超细鳞片状金属及复合粉体的制备技术 被引量:1
1
作者 蔡晓兰 夏书标 +1 位作者 舒波 郑淑萍 《中国工程科学》 2005年第S1期357-360,共4页
超细鳞片状金属及复合粉体由于其特殊的二维平面结构,具有良好的附着力、遮盖力、显著的屏蔽效应、反射能力和良好的导电性能;超细鳞片状金属及复合粉体的制备方法很多,有物理法(PVD法和机械研磨法等)、化学法以及机械化学法等,机械化... 超细鳞片状金属及复合粉体由于其特殊的二维平面结构,具有良好的附着力、遮盖力、显著的屏蔽效应、反射能力和良好的导电性能;超细鳞片状金属及复合粉体的制备方法很多,有物理法(PVD法和机械研磨法等)、化学法以及机械化学法等,机械化学法是制备超细鳞片状金属粉体的主要方法。 展开更多
关键词 超细鳞片状金属复合粉体 制备方法 机械化学法
下载PDF
复合超细金属及其氧化物吸收剂的制备方法
2
《科技开发动态》 1995年第3期55-55,共1页
关键词 复合超细金属 氧化物粉体 吸收剂 制备方法
原文传递
Strengthening contributions in ultra-high strength cryorolled Al-4%Cu-3%TiB_2 in situ composite 被引量:5
3
作者 N.NAGA KRISHNA K.SIVAPRASAD P.SUSILA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期641-647,共7页
Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit... Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening. 展开更多
关键词 Al alloy CRYOROLLING metal matrix composites ultrafine grained microstructure strengthening mechanisms
下载PDF
Fabrication of cast carbon steel with ultrafine TiC particles 被引量:2
4
作者 Sang-Hoon LEE Jin-Ju PARK +3 位作者 Sung-Mo HONG Byoung-Sun HAN Min-Ku LEE Chang-Kyu RHEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期54-57,共4页
The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and th... The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and the large sized components to be fabricated in short processing time. However, it is extremely difficult to obtain uniform dispersion of ultrafine ceramic particles in liquid metals due to the poor wettability and the specific gravity difference between the ceramic particle and metal matrix. In order to solve these problems, the mechanical milling (MM) and surface-active processes were introduced. As a result, Cu coated ultrafine TiC powders made by MM process using high energy ball milling machine were mixed with Sn powders as a surfactant to get better wettability by lowering the surface tension of carbon steel melt. The microstructural investigations by OM show that ultrafine TiC particles are distributed uniformly in carbon steel matrix. The grain sizes of the cast matrix with ultrafine TiC particles are much smaller than those without ultrafine TiC particles. This is probably due to the fact that TiC particles act as nucleation sites during solidification. The wear resistance of cast carbon steel composites added with MMed TiC/Cu-Sn powders is improved due to grain size refinement. 展开更多
关键词 TiC particles mechanical milling carbon steel CASTING DISPERSION WETTABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部