Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lacti...Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lactide (D, L-LA) and alanine was synthesized using stannous octoate as initiator. Magnetic polymer microspheres were fabricated with nano zinc ferrite fluid coated with alanine modified poly lactide. These as-prepared zinc ferrite fluids, modified poly lactide and magnetic composites, were characterized with X-ray diffraction diffractometer, FT-IR spectrometer, nuclear magnetic resonance spectrometer, scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analyzer. The results demonstrate that the as-prepared zinc ferrite is spinel type of ZnFe2O4 nano crystals with particle size of 20-45 nm and magnetization of 32×10^-3 A.m2. Alanine is copolymerized with lactide, and the prepared composite magnetic microsphere is coated with the modified polylactide, with mass fraction of 45.5% of PLA, particle size ranging from 80-300 nm, and magnetization of 10.6×10^-3 A·m^2, which suggests ZnFe2O4 enjoys a stable magnetization after being coated by polymer.展开更多
A new type of polypeptide(poly(-benzyl-L-glutamate)(PBLG))modified hydroxyapatite(HA)/poly(L-lactide)(PLLA)nanocomposites(PBLG-g-HA/PLLA)were prepared by the solvent-mixing method,and their mechanical and thermal prop...A new type of polypeptide(poly(-benzyl-L-glutamate)(PBLG))modified hydroxyapatite(HA)/poly(L-lactide)(PLLA)nanocomposites(PBLG-g-HA/PLLA)were prepared by the solvent-mixing method,and their mechanical and thermal properties were investigated.The tensile test showed that the mechanical properties of PBLG-g-HA/PLLA nanocomposites were better than that of PLLA,even a 0.3 wt%content of PBLG-g-HA in the nanocomposites could make the tensile strength 12%higher than that of the neat PLLA sample,and the tensile modulus was about 17%higher than that of the PLLA sample.The thermal gravimetric analysis(TGA)showed that the PBLG-g-HA/PLLA composites have better thermal stability than the PLLA sample.The differential scanning calorimetry(DSC)was used to characterize the effect of PBLG-g-HA on the crystallization of PLLA.The isothermal crystallization behavior showed that the half crystallization time(t1/2)of PBLG-g-HA/PLLA was much shorter than that of the PLLA sample.When the PBLG-g-HA content was 10%,t1/2 was only 18.7 min,while t1/2 of the PLLA sample was 61.4 min.The results showed that the PBLG-g-HA worked as a nucleating agent and enhanced the crystallization speed of PLLA.展开更多
基金Project (21107032) supported by the National Natural Science Foundation of ChinaProjects (Y406469,Y4110606) supported by Natural Science Foundation of Zhejiang Province, China+1 种基金Projects (2008AY2018,2011AY1048-5,2011AY1030) supported by the Science Foundation of Jiaxing Science and Technology Bureau,ChinaProject (2009C21003) supported by Science and Technology Department of Zhejiang Province,China
文摘Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lactide (D, L-LA) and alanine was synthesized using stannous octoate as initiator. Magnetic polymer microspheres were fabricated with nano zinc ferrite fluid coated with alanine modified poly lactide. These as-prepared zinc ferrite fluids, modified poly lactide and magnetic composites, were characterized with X-ray diffraction diffractometer, FT-IR spectrometer, nuclear magnetic resonance spectrometer, scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analyzer. The results demonstrate that the as-prepared zinc ferrite is spinel type of ZnFe2O4 nano crystals with particle size of 20-45 nm and magnetization of 32×10^-3 A.m2. Alanine is copolymerized with lactide, and the prepared composite magnetic microsphere is coated with the modified polylactide, with mass fraction of 45.5% of PLA, particle size ranging from 80-300 nm, and magnetization of 10.6×10^-3 A·m^2, which suggests ZnFe2O4 enjoys a stable magnetization after being coated by polymer.
基金supported by the National Natural Science Foundation of China (50733003)the International Cooperation Fund of Science and Technology (20071314) from the Ministry of Science and Technology of Chinathe fund from Chinese Academy of Sciences (KGCX-YW-208)
文摘A new type of polypeptide(poly(-benzyl-L-glutamate)(PBLG))modified hydroxyapatite(HA)/poly(L-lactide)(PLLA)nanocomposites(PBLG-g-HA/PLLA)were prepared by the solvent-mixing method,and their mechanical and thermal properties were investigated.The tensile test showed that the mechanical properties of PBLG-g-HA/PLLA nanocomposites were better than that of PLLA,even a 0.3 wt%content of PBLG-g-HA in the nanocomposites could make the tensile strength 12%higher than that of the neat PLLA sample,and the tensile modulus was about 17%higher than that of the PLLA sample.The thermal gravimetric analysis(TGA)showed that the PBLG-g-HA/PLLA composites have better thermal stability than the PLLA sample.The differential scanning calorimetry(DSC)was used to characterize the effect of PBLG-g-HA on the crystallization of PLLA.The isothermal crystallization behavior showed that the half crystallization time(t1/2)of PBLG-g-HA/PLLA was much shorter than that of the PLLA sample.When the PBLG-g-HA content was 10%,t1/2 was only 18.7 min,while t1/2 of the PLLA sample was 61.4 min.The results showed that the PBLG-g-HA worked as a nucleating agent and enhanced the crystallization speed of PLLA.