The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
The extrusion process of hybrid sheet metals through arbitrarily curved dies was analyzed by the method of upper bound. The material under deformation was divided into two deformation regions, bimetal and mono-metal r...The extrusion process of hybrid sheet metals through arbitrarily curved dies was analyzed by the method of upper bound. The material under deformation was divided into two deformation regions, bimetal and mono-metal regions, and the flow of the material in each region was assumed as plane strain state. The internal, shearing and frictional power terms were derived and they were used in the upper bound model. The extrusion forces for two types of die shapes, an optimum wedge shaped die and an optimum streamlined die shape for a hybrid sheet composed of copper as sleeve and aluminum as core were determined. The corresponding results for those two die shapes were also determined by using the finite element code, ABAQUS, and compared with the upper bound results. These comparisons show a good agreement.展开更多
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t...Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.展开更多
With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed ...With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.展开更多
Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhes...Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.展开更多
A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher t...A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.展开更多
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
文摘The extrusion process of hybrid sheet metals through arbitrarily curved dies was analyzed by the method of upper bound. The material under deformation was divided into two deformation regions, bimetal and mono-metal regions, and the flow of the material in each region was assumed as plane strain state. The internal, shearing and frictional power terms were derived and they were used in the upper bound model. The extrusion forces for two types of die shapes, an optimum wedge shaped die and an optimum streamlined die shape for a hybrid sheet composed of copper as sleeve and aluminum as core were determined. The corresponding results for those two die shapes were also determined by using the finite element code, ABAQUS, and compared with the upper bound results. These comparisons show a good agreement.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51974278)the Distinguished Young Fund of Natural Science Foundation of Hebei Province,China(E2018203446).
文摘Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.
文摘With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.
文摘Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.
文摘A newly designed vacuum Compton gamma-ray detector with Ta-Al clad-metal electron converter plate is described. The detecting efficiency for 1.25 MeV gamma-ray is 7.85×10-3 electron/γ,which is 2.5 times higher than that with Fe converter plate. The designed detector has the merits of well processed and static vacuum keeping and can be used for intense pulsed gamma ray detecting.