A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists ...A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.展开更多
基金supported by the Australian Research Council(No.LP130100913)the Baosteel-Australia Joint Research and Development Centre on the Project(No.BA110014LP)。
文摘A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.