Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmi...Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.展开更多
Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an ...Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an Al2O3-TiO2 composite oxide film was formed on the surface of the etched aluminum foil by anodizing galvanostatically in an ammonium adipate solution. The effects of I2 concentration in the acetone solution, applied anode voltage, electrolysis time, and annealing temperature on the specific capacitance of the aluminum anode foils were investigated. The TiO2-deposited specimens prepared by applying a po-tential of 50V for 3 min in 2.5m MI2-added acetone solution followed by annealing at 550℃ after anodization exhibited the highest specific capacitance, with an enhancement of 22% compared with pure etched aluminum foil specimens. The electro-deposition process and the change of the anode voltage during the anodization were analyzed.展开更多
文摘Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.
基金supported by the National Natural Science Foundation of China (21021002 & 51072170)
文摘Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an Al2O3-TiO2 composite oxide film was formed on the surface of the etched aluminum foil by anodizing galvanostatically in an ammonium adipate solution. The effects of I2 concentration in the acetone solution, applied anode voltage, electrolysis time, and annealing temperature on the specific capacitance of the aluminum anode foils were investigated. The TiO2-deposited specimens prepared by applying a po-tential of 50V for 3 min in 2.5m MI2-added acetone solution followed by annealing at 550℃ after anodization exhibited the highest specific capacitance, with an enhancement of 22% compared with pure etched aluminum foil specimens. The electro-deposition process and the change of the anode voltage during the anodization were analyzed.