To improve the level of active traffic management,a short-term traffic flow prediction model is proposed by combining phase space reconstruction(PSR)and extreme gradient boosting(XGBoost)algorithms.Firstly,the traditi...To improve the level of active traffic management,a short-term traffic flow prediction model is proposed by combining phase space reconstruction(PSR)and extreme gradient boosting(XGBoost)algorithms.Firstly,the traditional data preprocessing method is improved.The new method uses hierarchical clustering to determine the traffic flow state and fills in missing and abnormal data according to different traffic flow states.Secondly,one-dimensional data are mapped into a multidimensional data matrix through PSR,and the time series complex network is used to verify the data reconstruction effect.Finally,the multidimensional data matrix is inputted into the XGBoost model to predict future traffic flow parameters.The experimental results show that the mean square error,average absolute error,and average absolute percentage error of the prediction results of the PSR-XGBoost model are 5.399%,1.632%,and 6.278%,respectively,and the required running time is 17.35 s.Compared with mathematical-statistical models and other machine learning models,the PSR-XGBoost model has clear advantages in multiple predictive indicators,proving its feasibility and superiority in short-term traffic flow prediction.展开更多
To solve the irregular, poor efficiency and lowly reusable of resource, the hierarchy model of the ontology-based E-learning system is proposed. Some key techniques in the process of the project are also discussed in ...To solve the irregular, poor efficiency and lowly reusable of resource, the hierarchy model of the ontology-based E-learning system is proposed. Some key techniques in the process of the project are also discussed in this paper, such as the ontology construction, the content ontology for describing the semantics of the learning materials.展开更多
基金The National Natural Science Foundation of China (No.71771019, 71871130, 71971125)the Science and Technology Special Project of Shandong Provincial Public Security Department (No. 37000000015900920210010001,37000000015900920210012001)。
文摘To improve the level of active traffic management,a short-term traffic flow prediction model is proposed by combining phase space reconstruction(PSR)and extreme gradient boosting(XGBoost)algorithms.Firstly,the traditional data preprocessing method is improved.The new method uses hierarchical clustering to determine the traffic flow state and fills in missing and abnormal data according to different traffic flow states.Secondly,one-dimensional data are mapped into a multidimensional data matrix through PSR,and the time series complex network is used to verify the data reconstruction effect.Finally,the multidimensional data matrix is inputted into the XGBoost model to predict future traffic flow parameters.The experimental results show that the mean square error,average absolute error,and average absolute percentage error of the prediction results of the PSR-XGBoost model are 5.399%,1.632%,and 6.278%,respectively,and the required running time is 17.35 s.Compared with mathematical-statistical models and other machine learning models,the PSR-XGBoost model has clear advantages in multiple predictive indicators,proving its feasibility and superiority in short-term traffic flow prediction.
文摘To solve the irregular, poor efficiency and lowly reusable of resource, the hierarchy model of the ontology-based E-learning system is proposed. Some key techniques in the process of the project are also discussed in this paper, such as the ontology construction, the content ontology for describing the semantics of the learning materials.