In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray t...In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder ...To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.展开更多
This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method an...This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.展开更多
Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction ...Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.展开更多
SY509-3-183 [篇名] Behavior of stir-cast Al-alloy particulate-reinforced metal-matrix composites under successive hot rolling;SY509-3-184 [篇名] Bone-bonding ability of anodic oxidized titanium;……
Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic co...Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic composite nanocoating for titanium surfaces,which provides a natural environment for facilitating adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(MSCs).Electrospinning was used to produce composite nanofiber coatings based on polycaprolactone(PCL),nano-hydroxyapatite(nHAp)and strontium ranelate(SrRan).Thus,four types of coatings,i.e.,PCL,PCL/nHAp,PCL/SrRan,and PCL/nHAp/SrRan,were applied on titanium surfaces.To assess chemical,morphological and biological properties of the developed coatings,EDS,FTIR,XRD,XRF,SEM,AFM,in-vitro cytotoxicity and in-vitro hemocompatibility analyses were performed.Our findings have revealed that the composite nanocoatings were both cytocompatible and hemocompatible;thus PCL/HAp/SrRan composite nanofiber coating led to the highest cell viability.Osteogenic culture of MSCs on the nanocoatings led to the osteogenic differentiation of stem cells,confirmed by alkaline phosphatase activity and mineralization measurements.The findings support the notion that the proposed composite nanocoatings have the potential to promote new bone formation and enhance bone-implant integration.展开更多
The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained struc...The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6%SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2.g-1 and 0.28 cm3.g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 min under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.展开更多
Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (sc...Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.展开更多
TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scan...TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.展开更多
Conventional titanium oxide(TiO2) as an electron transport layer(ETL) in hybrid organic-inorganic perovskite solar cells(PSCs) requires a sintering process at a high temperature to crystalize, which is not suitable fo...Conventional titanium oxide(TiO2) as an electron transport layer(ETL) in hybrid organic-inorganic perovskite solar cells(PSCs) requires a sintering process at a high temperature to crystalize, which is not suitable for flexible PSCs and tandem solar cells with their low-temperatureprocessed bottom cell. Here, we introduce a low-temperature solution method to deposit a TiO2/tin oxide(SnO2) bilayer towards an efficient ETL. From the systematic measurements of optical and electronic properties, we demonstrate that the TiO2/SnO2 ETL has an enhanced charge extraction ability and a suppressed carrier recombination at the ETL/perovskite interface, both of which are beneficial to photo-generated carrier separation and transport. As a result, PSCs with TiO2/SnO2 bilayer ETLs present higher photovoltaic performance of the baseline cells compared with their TiO2 and SnO2 single-layer ETL counterparts. The champion PSC has a power conversion efficiency(PCE) of 19.11% with an open-circuit voltage(Voc)of 1.15 V, a short-circuit current density(Jsc) of 22.77 mA cm^-2,and a fill factor(FF) of 72.38%. Additionally, due to the suitable band alignment of the TiO2/SnO2 ETL in the device, a high Vocof 1.18 V is achieved. It has been proven that the TiO2/SnO2 bilayer is a promising alternative ETL for high efficiency PSCs.展开更多
文摘In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Projects(2019J01813,2018J01557) supported by the Natural Science Foundation of Fujian Province,ChinaProject(2018H0031) supported by the Guiding Science Program of Fujian Province,ChinaProject(2018GP2002) supported by the Science and Technology Program of Putian City,China
文摘To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.
基金Department of Science and Technology [DST-WOS-A, No.SR/WOS-A/ET-1093/2015 (G)] for funding the project
文摘This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.
文摘Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.
文摘SY509-3-183 [篇名] Behavior of stir-cast Al-alloy particulate-reinforced metal-matrix composites under successive hot rolling;SY509-3-184 [篇名] Bone-bonding ability of anodic oxidized titanium;……
文摘Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic composite nanocoating for titanium surfaces,which provides a natural environment for facilitating adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(MSCs).Electrospinning was used to produce composite nanofiber coatings based on polycaprolactone(PCL),nano-hydroxyapatite(nHAp)and strontium ranelate(SrRan).Thus,four types of coatings,i.e.,PCL,PCL/nHAp,PCL/SrRan,and PCL/nHAp/SrRan,were applied on titanium surfaces.To assess chemical,morphological and biological properties of the developed coatings,EDS,FTIR,XRD,XRF,SEM,AFM,in-vitro cytotoxicity and in-vitro hemocompatibility analyses were performed.Our findings have revealed that the composite nanocoatings were both cytocompatible and hemocompatible;thus PCL/HAp/SrRan composite nanofiber coating led to the highest cell viability.Osteogenic culture of MSCs on the nanocoatings led to the osteogenic differentiation of stem cells,confirmed by alkaline phosphatase activity and mineralization measurements.The findings support the notion that the proposed composite nanocoatings have the potential to promote new bone formation and enhance bone-implant integration.
基金Supported by the National Natural Science Foundation of China(21173018,20473009)
文摘The core-shell structured TiO2/SiO2 @Fe3O4 photocatalysts were prepared using Fe3O4 as magnetic core,tetraethoxysilane(TEOS) as silica source and tetrabutyl titanate(TBOT) as titanium sources.The as-obtained structure was composed of a SiO2@Fe3O4 core and a porous TiO2 shell.The diameter of SiO2@Fe3O4 core was about 205 nm with thickness of porous TiO2 of about 5-6 nm.The 9%TiO2/6%SiO2@Fe3O4 microspheres possess the highest BET surface area and the BJH pore volume,which are 373.5 m2.g-1 and 0.28 cm3.g-1,respectively.The 9%TiO2/6%SiO2@Fe3O4 photocatalyst exhibited an excellent performance for the degradation of methyl orange and methylene blue dyes.Two different dyes were completely decolorized in 60 min under UV irradiation.The photocatalytic activity and the amount of catalyst were almost not decrease after recycling for 6 times by using external magnetic field.
文摘Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2011BAE12B03)the National Natural Science Foundation of China(Grant No.11372110)
文摘TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.
基金supported by the National Key Research and Development of China (2018YFB1500103 and 2018YFB0704100)the National Natural Science Foundation of China (61574145, 61874177, 51502315 and 61704176)+1 种基金Zhejiang Provincial Natural Science Foundation (LR16F040002)Zhejiang Energy Group (znkj-2018-118)
文摘Conventional titanium oxide(TiO2) as an electron transport layer(ETL) in hybrid organic-inorganic perovskite solar cells(PSCs) requires a sintering process at a high temperature to crystalize, which is not suitable for flexible PSCs and tandem solar cells with their low-temperatureprocessed bottom cell. Here, we introduce a low-temperature solution method to deposit a TiO2/tin oxide(SnO2) bilayer towards an efficient ETL. From the systematic measurements of optical and electronic properties, we demonstrate that the TiO2/SnO2 ETL has an enhanced charge extraction ability and a suppressed carrier recombination at the ETL/perovskite interface, both of which are beneficial to photo-generated carrier separation and transport. As a result, PSCs with TiO2/SnO2 bilayer ETLs present higher photovoltaic performance of the baseline cells compared with their TiO2 and SnO2 single-layer ETL counterparts. The champion PSC has a power conversion efficiency(PCE) of 19.11% with an open-circuit voltage(Voc)of 1.15 V, a short-circuit current density(Jsc) of 22.77 mA cm^-2,and a fill factor(FF) of 72.38%. Additionally, due to the suitable band alignment of the TiO2/SnO2 ETL in the device, a high Vocof 1.18 V is achieved. It has been proven that the TiO2/SnO2 bilayer is a promising alternative ETL for high efficiency PSCs.