针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF)...针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。展开更多
为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法...为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法在不损失有用信号的基础上有效抑制了射频干扰,且处理速度快,满足高频地波雷达实时工作要求。展开更多
文摘针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。
文摘为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法在不损失有用信号的基础上有效抑制了射频干扰,且处理速度快,满足高频地波雷达实时工作要求。