期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
基于经验模态分解和优化BiLSTM的短期负荷预测
1
作者 骆东松 魏義民 张杰锋 《机械与电子》 2024年第9期11-17,共7页
针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF)... 针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。 展开更多
关键词 电力系统 负荷预测 经验模态分解 麻雀搜索算法 双向长短时记忆神经网络
下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型 被引量:1
2
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法
3
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
下载PDF
基于双模态分解的发电站母线短期负荷预测
4
作者 刘昕明 吉建光 +1 位作者 李玮 石光磁 《电气工程学报》 CSCD 北大核心 2024年第1期124-132,共9页
母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decompos... 母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decomposition,EMD),通过K-means聚类分析对复杂度相似的分量进行集合得到三个组合分量。其次,使用变分模态分解(Variational mode decomposition, VMD)对组合分量再次进行分解得到不同分量,使用麻雀搜索算法(Sparrow search algorithm,SSA)对变分模态分解的参数进行优化。再次,将变分模态分解得到的分量与影响因素连接并输入长短期记忆网络(Long short-term memory network, LSTM),通过注意力机制挖掘数据内部的相关性,并使用SSA对LSTM网络的参数进行优化。最后,采用宁夏某电站一年的负荷数据进行验证,经过与不同模型的对比分析,所提模型有更高的预测精度。 展开更多
关键词 负荷预测 经验模态分解 麻雀搜索算法 变分模态分解 长短期记忆网络 注意力机制
下载PDF
基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测 被引量:24
5
作者 徐龙琴 李乾川 +1 位作者 刘双印 李道亮 《农业工程学报》 EI CAS CSCD 北大核心 2016年第3期202-209,共8页
针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition,EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中... 针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition,EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中,利用EEMD算法对原始pH值时间序列进行多尺度分解,得到一组平稳、互不耦合的子序列;根据各子序列变化特征选择适宜的单项预测方法并建模,通过改进人工蜂群(IABC)算法优化复杂非线性组合预测模型目标函数权重系数,构建了工厂化养殖pH值非线性组合预测模型。利用该模型对广东省湛江市2014年9月8日-2014年9月15日期间工厂化养殖pH值进行预测,结果表明,该预测模型取得了较好的预测效果,与模拟退火优化BP神经网络(simulated Annealing-BP neural network,SA-BPNN)和遗传算法优化最小二乘支持向量回归机(genetic algorithm-least square support vector regression,GA-LSSVR)对比分析,模型评价指标平均绝对百分比误差MAPE、均方根误差、平均绝对误差MAE和相关系数R2分别为0.0035、0.0274、0.0224和0.9923,均表明该文提出的组合预测模型具有更高预测精度,能够满足实际南美白对虾工厂化养殖pH值精细化管理需要,也为其他领域pH值预测提供参考。 展开更多
关键词 算法 pH值 水产养殖 组合预测 集合经验模态分解 人工蜂群算法 南美白对虾
下载PDF
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究 被引量:13
6
作者 杨磊 黄元生 +2 位作者 张向荣 董玉琳 高冲 《电力系统保护与控制》 EI CSCD 北大核心 2020年第10期81-90,共10页
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算... 准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。 展开更多
关键词 短期风速预测 集合经验模态分解 套索算法 广义回归神经网络 长短期记忆 遗传算法
下载PDF
基于模态分解和时间卷积网络的瓦斯涌出量组合预测
7
作者 毛智强 徐耀松 +2 位作者 王丹丹 田楚汉 黄明宇 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1795-1802,共8页
为有效地分析和处理煤矿中产生的瓦斯涌出数据,实现精准、可靠的回采工作面绝对瓦斯涌出量预测,以提前规避瓦斯灾害,提出自适应噪声完整集成经验模态分解对瓦斯涌出量序列进行分解,对分解得到的各分量分别构建时间卷积网络模型。利用IGJ... 为有效地分析和处理煤矿中产生的瓦斯涌出数据,实现精准、可靠的回采工作面绝对瓦斯涌出量预测,以提前规避瓦斯灾害,提出自适应噪声完整集成经验模态分解对瓦斯涌出量序列进行分解,对分解得到的各分量分别构建时间卷积网络模型。利用IGJO算法对TCN模型的相关超参数进行寻优,建立各分量的预测模型。使用Logistic混沌映射生成金豺种群,引入柯西-高斯变异算子,更新金豺位置并选择最优位置,增强算法搜索能力,避免种群陷入局部最优。将各分量的预测输出值叠加,得到最终的瓦斯涌出量预测值。测试结果表明,CEEMDAN-IGJO-TCN组合预测方法,降低了预测的复杂度同时提高了预测精度。 展开更多
关键词 瓦斯涌出量预测 经验模态分解 时间卷积网络 金豺优化算法 柯西-高斯变异
下载PDF
具有独立分量的经验模态分解算法研究 被引量:4
8
作者 李洪 郝豪豪 孙云莲 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第7期245-248,共4页
在经验模态分解算法中用极值包络平均近似局部平均,不能保证分解分量之间的正交性,固有模态分量存在冗余.这种情况对信号成份分析尤为不利,冗余部分的物理意义无法解释,或可能作出错误的解释.将独立分量分析方法引入经验模态分解算法中... 在经验模态分解算法中用极值包络平均近似局部平均,不能保证分解分量之间的正交性,固有模态分量存在冗余.这种情况对信号成份分析尤为不利,冗余部分的物理意义无法解释,或可能作出错误的解释.将独立分量分析方法引入经验模态分解算法中,利用其良好的分解独立特性,使模态分量不仅正交而且相互独立,消除了冗余.仿真试验表明,改进算法的模态分量彼此独立,特别对于混有突变信号的周期信号,在得到周期分量的同时,也得到突变分量,说明了改进算法比原算法优越,且具有较好的工程应用前景. 展开更多
关键词 经验模态分解 固有模态函数 独立分量分析 改进算法
下载PDF
利用复数经验模态分解抑制高频地波雷达射频干扰的工程应用
9
作者 谢岱玲 洪羽萌 +3 位作者 陈羽洁 叶彩云 谢飞 陈泽宗 《科学技术与工程》 北大核心 2015年第34期74-80,99,共8页
为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法... 为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法在不损失有用信号的基础上有效抑制了射频干扰,且处理速度快,满足高频地波雷达实时工作要求。 展开更多
关键词 高频地波雷达 射频干扰 复数经验模态分解算法 有用信号 实测数据
下载PDF
基于经验模态分解算法的永磁直线同步电机迭代学习控制 被引量:15
10
作者 王丽梅 孙璐 初升 《电工技术学报》 EI CSCD 北大核心 2017年第6期164-171,共8页
在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算... 在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算法分解ILC过程中的跟踪误差,筛选并消除其中发散的分量,保证ILC的收敛性,提高ILC的收敛速度。仿真和实验结果表明,与传统ILC相比,所提出的控制方法能够使系统的跟踪效果更好,且保证了伺服系统的输出轨迹在较少的迭代次数下快速精确地收敛到期望轨迹。 展开更多
关键词 永磁直线同步电机 迭代学习控制 经验模态分解算法 跟踪误差
下载PDF
基于二维经验模态分解算法的织物疵点自动检测 被引量:4
11
作者 厉征鑫 刘基宏 +2 位作者 高卫东 潘如如 柴志雷 《纺织学报》 CAS CSCD 北大核心 2011年第7期49-53,共5页
为解决织物疵点检测工序中存在的耗时性问题,提出一种基于二维经验模态分解(EMD)的多方向自适应检测方法。通过Delaunay三角分割、径向基函数插值与二维三次样条插值等方法实现二维EMD算法,用该方法将织物灰度图像分解为一系列子图像,... 为解决织物疵点检测工序中存在的耗时性问题,提出一种基于二维经验模态分解(EMD)的多方向自适应检测方法。通过Delaunay三角分割、径向基函数插值与二维三次样条插值等方法实现二维EMD算法,用该方法将织物灰度图像分解为一系列子图像,选取包含疵点信息的子图像进行融合,最后通过阈值化来识别织物图像中的疵点。借助于工业线阵相机采集包含不同疵点的织物图像,并利用提出的方法进行自动检测。结果表明,子图像融合结果中疵点信息明显,与背景的反差强烈,通过阈值法可以直接判断出图像中是否包含疵点,并完成疵点定位,该方法对织物疵点的检测十分有效。 展开更多
关键词 二维经验模态分解算法 织物疵点 Delaunay三角分割 径向基函数 三次样条插值
下载PDF
基于有效数据的经验模态分解快速算法研究 被引量:7
12
作者 胡劲松 杨世锡 《振动.测试与诊断》 EI CSCD 2006年第2期119-121,共3页
在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD... 在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD快速算法不但能显著提高算法的速度,而且还可以提高算法的精度。该研究成果能广泛地用于信号时频分析领域。 展开更多
关键词 有效数据 经验模态分解 快速算法 时频分析
下载PDF
基于集合经验模态分解降噪和优化LSTM的道路交通事故预测 被引量:2
13
作者 刘清梅 万明 +1 位作者 严利鑫 郭军华 《交通信息与安全》 CSCD 北大核心 2023年第5期12-23,共12页
道路交通事故精准预测是有效提升交通安全的重要手段,由于事故数据经常呈现非线性、波动性、无周期性等特征,现有的算法存在预测效果不佳的问题。为此本文提出基于集合经验模态分解降噪算法(ensemble empirical mode decomposition,EEMD... 道路交通事故精准预测是有效提升交通安全的重要手段,由于事故数据经常呈现非线性、波动性、无周期性等特征,现有的算法存在预测效果不佳的问题。为此本文提出基于集合经验模态分解降噪算法(ensemble empirical mode decomposition,EEMD)和优化长短时记忆神经网络(long short-term memory,LSTM)的交通事故数量预测模型。在单一模型的基础上,引入降噪算法EEMD对噪声大的交通事故时间序列进行降噪处理,利用EEMD对事故时间序列进行分解得到多个子序列和1个残差项;基于粒子群优化算法(particle swarm optimization,PSO)优化LSTM网络结构参数,并在LSTM的最优网络结构下提取数据中的时间特征信息进行预测,对各子序列及残差的预测结果求和得到最终预测结果。研究结果表明:相对于EMD-PSO-LSTM,PSO-LSTM,EEMD-LSTM,LSTM这4个模型,EEMD-PSO-LSTM的预测效果最好,其对应的预测误差e_(rmse)分别降低了8.7%、48.3%、53.1%、57.6%,误差e_(mape)分别降低了12.4%、36.9%、50.6%、61.2%。进一步研究表明,运用EEMD对数据进行降噪预处理能提高预测精度,与PSO-LSTM模型相比,EEMD-PSO-LSTM模型的误差e_(rmse)降低了60.2%,e_(mape)降低了12.4%,判定系数r^(2)提高了0.6165;引入PSO模型优化神经网络结构同样也能有效提升预测效果,与EEMD-LSTM模型相比,EEMD-PSO-LSTM模型的误差e_(rmse)减小了53.1%,e_(mape)降低了50.6%,判定系数r^(2)提高了0.8078。该研究结果能够提高交通事故预测精度,帮助相关部门有效提高道路交通安全水平。 展开更多
关键词 交通安全 事故预测 长短时记忆神经网络 粒子群算法 集合经验模态分解
下载PDF
联合非降采样金字塔与经验模态分解的遥感图像融合算法 被引量:3
14
作者 王文波 李合龙 张晓东 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第11期1394-1398,共5页
为了更好地进行遥感图像融合,联合非降采样拉普拉斯金字塔变换(NLP)和二维经验模态分解(BEMD),提出了一种利用分解系数绝对值和瞬时频率作为融合特征的遥感图像融合新算法.首先利用非降采样金字塔对高分辨率全色图像(PAN)进行分解,使其... 为了更好地进行遥感图像融合,联合非降采样拉普拉斯金字塔变换(NLP)和二维经验模态分解(BEMD),提出了一种利用分解系数绝对值和瞬时频率作为融合特征的遥感图像融合新算法.首先利用非降采样金字塔对高分辨率全色图像(PAN)进行分解,使其低频部分和低分辨率全色图像(MS)具有相同的尺度特性;再对低频部分和MS图像进行BEMD分解,得到二维内蕴模态函数(bimf)和趋势图像,并计算各层bimf的4方向瞬时频率.为了尽可能提高空间细节质量,利用瞬时频率和分解系数绝对值作为融合特征,并考虑bimf部分对应位置系数的正负关系,采用加权算法对高频细节部分进行融合;最后进行相应的BEMD和NLP逆变换,得到融合图像.实验表明,该方法对融合影像的光谱质量和空间细节质量都有较好的改善. 展开更多
关键词 二维经验模态分解 非降采样金字塔 瞬时频率 遥感图像融合 融合算法 频率能量
下载PDF
经验模态分解中包络线算法 被引量:8
15
作者 朱赛 尚伟 《火力与指挥控制》 CSCD 北大核心 2012年第9期125-128,共4页
经验模态分解(EMD)是一种先进的信号处理方法,对非线性、非平稳信号具有独特的分析能力。它的包络线算法存在着过冲/欠冲和端点问题,影响信号分解质量。分析了过冲/欠冲和端点问题产生的原因,提出了采用保形分段3次插值方法作为EMD分解... 经验模态分解(EMD)是一种先进的信号处理方法,对非线性、非平稳信号具有独特的分析能力。它的包络线算法存在着过冲/欠冲和端点问题,影响信号分解质量。分析了过冲/欠冲和端点问题产生的原因,提出了采用保形分段3次插值方法作为EMD分解过程中的包络算法,解决了拟合包络线的过冲/欠冲问题;采用端点处包络线位置预测,对端点处的包络线位置加以约束,与极值点对称延拓的方法结合使用,充分利用信号本身信息,一定程度上抑制了端点问题。最后,用一个仿真实验验证了该方法的有效性。 展开更多
关键词 经验模态分解(EMD) 包络线算法 端点问题 极值点对称延拓
下载PDF
基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法 被引量:7
16
作者 张朝龙 赵筛筛 何怡刚 《电力系统保护与控制》 EI CSCD 北大核心 2023年第13期177-186,共10页
准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和... 准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和集成机器学习的锂离子电池剩余使用寿命预测方法。首先,利用集成经验模态分解算法分解锂离子电池老化数据。其次,分别利用集成的长短时记忆神经网络与相关向量机对分解得到的残差数据序列和本征模态数据序列建模预测。最后,融合预测的残差数据序列和本征模态数据序列,综合计算锂离子电池未来寿命老化轨迹。采用储能锂离子电池老化数据进行验证,结果显示所提出的锂离子电池RUL预测方法具有更好的鲁棒性与非线性跟踪能力。 展开更多
关键词 锂离子电池 剩余使用寿命预测 集成经验模态分解 相关向量机算法 长短时记忆神经网络
下载PDF
经验模态分解的一种改进算法 被引量:22
17
作者 盖广洪 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第11期1199-1202,共4页
针对信号采样频率过低对经验模态分解造成的虚假模态等问题,提出了一种改进的算法,即在进行分解前,对原始信号进行重构,其实质是通过内插的方式来增加采样点数,从而达到增加采样频率的目的.对模拟信号的处理结果表明,该算法消除了分解... 针对信号采样频率过低对经验模态分解造成的虚假模态等问题,提出了一种改进的算法,即在进行分解前,对原始信号进行重构,其实质是通过内插的方式来增加采样点数,从而达到增加采样频率的目的.对模拟信号的处理结果表明,该算法消除了分解过程中包络曲线的异常波动,从而抑制了分解结果中多余模态的出现,使得对模态的物理解释更加清晰.在机械信号处理中,应用该算法成功地提取出机械信号中具有明确物理意义的故障模态,从而增加了机械故障诊断的能力. 展开更多
关键词 经验模态分解 改进算法 采样频率 故障诊断
下载PDF
基于总体平均经验模态分解的语音增强算法研究 被引量:4
18
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(EEMD) 小波阈值去噪 语音增强算法
下载PDF
一种利用经验模态分解算法的光电容积脉搏波信号中提取呼吸波的方法研究 被引量:6
19
作者 陈真诚 牛春望 +1 位作者 朱健铭 梁永波 《生物医学工程研究》 2019年第2期134-139,共6页
针对目前提取呼吸波准确性不高的问题,本研究提出了一种从光电容积描记(photoplethysmography,PPG)信号中提取呼吸波的有效方法。在MIMIC Database中获取人体同时段的多路生理信号,包括PPG信号和呼吸波信号。首先,利用经验模态分解算法(... 针对目前提取呼吸波准确性不高的问题,本研究提出了一种从光电容积描记(photoplethysmography,PPG)信号中提取呼吸波的有效方法。在MIMIC Database中获取人体同时段的多路生理信号,包括PPG信号和呼吸波信号。首先,利用经验模态分解算法(empirical mode decomposition,EMD)对PPG信号进行分解,得到各层本征模函数(intrinsic mode function,IMF),选择合适的IMF分量重构出呼吸波信号;然后将重构的呼吸波信号与采用PPG信号同时段的原始呼吸波信号进行比较,结果显示,呼吸波信号速率的准确率均在90%以上,AR功率谱中的相关性系数均在85%以上,呼吸波信号相对相干系数也显示该方法的优越性。采用EMD算法可以有效地从PPG信号中提取呼吸波,这对于临床实践中的无创检测,医疗设备的改进具有重要意义。 展开更多
关键词 光电容积脉搏波 经验模态分解算法 MIMIC DATABASE 本征模函数 呼吸波
下载PDF
基于总体平均经验模态分解和一步式字典学习联合去噪的语音端点检测算法 被引量:3
20
作者 张开生 赵小芬 +1 位作者 王泽 宋帆 《科学技术与工程》 北大核心 2020年第35期14536-14542,共7页
针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先... 针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先利用EEMD算法对输入语音进行分解得到本征模式分量(intrinsic mode function,IMF),然后使用OS-DL算法分别对纯净语音信号与噪声信号进行训练,得到纯净语音信号和噪声信号的幅度谱字典,进而对幅度谱进行稀疏表示,利用得到的系数矩阵重新构建出语音信号频谱,将重构出的语音信号频谱经过傅里叶逆变换得到降噪后的语音信号,最后对降噪后的语音信号利用均匀子带频带方差法进行端点检测。实验结果表明,该算法在复杂环境信噪比低于-10 dB情况下检测准确率仍可达到85%以上,且平均检测时间缩短至传统端点检测算法的1/3。 展开更多
关键词 总体平均经验模态分解(EEMD)算法 一步式字典(OS-DL)算法 稀疏表示 子带频带方差 端点检测
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部