期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
对复晶金刚石的显微结构观测有助于解决黑金刚石之谜
1
《地质科技动态》 1999年第9期13-14,共2页
关键词 金刚石 复晶金刚石 显微结构 金刚
下载PDF
Fabrication and application of nano/microcrystalline composite diamond coated drawing dies using alternative carbon sources 被引量:1
2
作者 Cheng-chuan WANG Xin-chang WANG Fang-hong SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1602-1610,共9页
Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer a... Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer and acetone for the nanocrystalline diamond(NCD) layer. Moreover, the monolayer methane-MCD and acetone-NCD coated drawing dies were fabricated as comparisons. The adhesion and wear rates of the diamond coated drawing dies were also tested by an inner hole polishing apparatus. Compared with mono-layer diamond coated drawing die, the composite diamond coated one exhibits better comprehensive performance, including higher adhesive strength and better wear resistance than the NCD one, and smoother surface(Ra=65.3 nm) than the MCD one(Ra=95.6 nm) after polishing at the same time. Compared with the NCD coated drawing die, the working lifetime of the composite diamond coated one is increased by nearly 20 times. 展开更多
关键词 MICROCRYSTALLINE NANOCRYSTALLINE composite diamond film WC Co drawing die alternative carbon source
下载PDF
Critical weight on bit of double-driven bottomhole assembly during vertical and fast drilling 被引量:1
3
作者 祝效华 贾彦杰 童华 《Journal of Central South University》 SCIE EI CAS 2012年第2期572-577,共6页
It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during ver... It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during vertical and fast drilling. High WOB leads to well deviation out of control, and low WOB leads to low rate of penetration (ROP). So considering the rock physical properties, the anisotropy index function of polycrystalline diamond compact (PDC) bit was derived with the structure and cutting performance parameters of the bit, and the effect of natural hole deviation tendencies on the performance of DD-BHA resisting deviation was represented. The concept of elliptic deformation ratio was used to characterize the performance of DD-BHA resisting deviation. Eventually, a model calculating the critical WOB was established. By comparing the model predictions with the measured hole angle changes in the field, the results show that the model predictions are accurate with error less than 5.8%, which can meet the operational requirements in the projects. Furthermore, the model was adopted to justify and guide the operating conditions and parameters during drilling, which shows that the optimum WOB predicted by the model can not only control deviation but also improve ROP effectively. The model is independent on the formation characteristics of blocks, so it can be expanded widely to other oilfields. 展开更多
关键词 double-driven bottomhole assembly vertical and fast drilling critical weight of bit elliptic deformation ratio bit anisotropy
下载PDF
Synthesis of growth-type polycrystalline diamond compact (PDC) using the solvent Fe_(55)Ni_(29)Co_(16) alloy under HPHT 被引量:9
4
作者 JIA HongSheng JIA XiaoPeng +1 位作者 MA HongAn LI HaiBo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第8期1394-1398,共5页
A growth-type polycrystalline diamond compact (PDC) was synthesized under high temperature and high pressure (HPHT). The infiltration technique was used with an Fe55Ni29Co16 (KOV) alloy as the sintering solvent.... A growth-type polycrystalline diamond compact (PDC) was synthesized under high temperature and high pressure (HPHT). The infiltration technique was used with an Fe55Ni29Co16 (KOV) alloy as the sintering solvent. The morphology and weight ra- tio of the PDC were investigated through scanning electron microscopy (SEM) and electron dispersion spectroscopy (EDS). Note that the KOV alloy evenly infiltrated throughout the polycrystalline diamond (PCD) layer and WC-Co substrate in a short sintering time due to its low viscosity and high soakage capability. A transition layer confirmed the presence of the M^C phase near the interface of the PDC, which can make the diamond layer and WC-Co substrate combine as a complex material. X-ray diffraction (XRD) performed on the PCD layer confirmed the presence of cubic diamond, WC, cubic CoCx, the high tempera- ture cubic phase of c^-Co, the alloy phase of FeNix, and no graphite phase. Besides, a surface residual stress of the PCD layer, measured with reasonable accuracy using micro-Raman spectroscopy, is found to be a homogeneous compressive stress with an average value of 0.16 GPa, much lower than that of the powders-mixing method. 展开更多
关键词 HPHT INFILTRATION PDC Fe55Ni29Co16 alloy residual stress
原文传递
FEM analysis on the effect of cobalt content on thermal residual stress in polycrystalline diamond compact(PDC) 被引量:6
5
作者 LI ZhanChang JIA HongSheng +5 位作者 MA HongAn GUO Wei LIU XiaoBing HUANG GuoFeng LI Rui JIA XiaoPeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第4期639-643,共5页
Thermal residual stress in Polycrystalline Diamond Compacts (PDCs) is mainly caused by the mismatch in the Coefficients of Thermal Expansion (CTE) between the polycrystalline diamond (PCD) layer and WC-Co substr... Thermal residual stress in Polycrystalline Diamond Compacts (PDCs) is mainly caused by the mismatch in the Coefficients of Thermal Expansion (CTE) between the polycrystalline diamond (PCD) layer and WC-Co substrate. In the PCD layer, the CTE of cobalt exhibit magnitudes four times larger than those of diamond. Cobalt content in the PCD layer has important effects on the thermal residual stress of PDCs. In this work, the effects of cobalt content on thermal residual stress in PCDs were investi- gated by the Finite Element Method (FEM). The simulation results show that the thermal residual stress decreases firstly, and then increases with increasing cobalt content (1 vo1.%-20 vol.%), which reaches a minimum value when the cobalt content is about 10 vol.%. The FEM analysis results are in agreement with our experimental results. It will provide an effective method for further designing and optimizing PDC properties. 展开更多
关键词 FEM PDC cobalt content thermal residual stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部