期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多传感器数据融合的复杂人体活动识别
被引量:
12
1
作者
宋欣瑞
张宪琦
+2 位作者
张展
陈新昊
刘宏伟
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第10期814-821,共8页
基于传感器的人体活动识别被广泛应用到各个领域,但利用多种异构传感器识别日常的复杂人体活动,仍然存在很多问题。对多个异构传感器数据进行数据融合时,存在兼容性问题,导致对并发复杂活动识别准确率较低。该文提出基于多传感器决策级...
基于传感器的人体活动识别被广泛应用到各个领域,但利用多种异构传感器识别日常的复杂人体活动,仍然存在很多问题。对多个异构传感器数据进行数据融合时,存在兼容性问题,导致对并发复杂活动识别准确率较低。该文提出基于多传感器决策级数据融合的多任务深度学习模型。该模型利用深度学习自动地从每个传感器原始数据中进行特征提取。利用多任务学习的联合训练方法将并发复杂活动分为多个子任务,多个子任务共享网络结构,相互促进学习,提高模型的泛化性能。实验表明:该模型对周期性活动的识别准确率可达到94.6%,非周期性活动可达到93.4%,并发复杂活动可达到92.8%。该模型比3个基线模型的识别准确率平均高出8%。
展开更多
关键词
复杂人体活动识别
多传感器数据融合
深度学习
多任务学习
原文传递
题名
多传感器数据融合的复杂人体活动识别
被引量:
12
1
作者
宋欣瑞
张宪琦
张展
陈新昊
刘宏伟
机构
哈尔滨工业大学计算机科学与技术学院
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第10期814-821,共8页
基金
国家重点研发计划(2018YFC0830602)。
文摘
基于传感器的人体活动识别被广泛应用到各个领域,但利用多种异构传感器识别日常的复杂人体活动,仍然存在很多问题。对多个异构传感器数据进行数据融合时,存在兼容性问题,导致对并发复杂活动识别准确率较低。该文提出基于多传感器决策级数据融合的多任务深度学习模型。该模型利用深度学习自动地从每个传感器原始数据中进行特征提取。利用多任务学习的联合训练方法将并发复杂活动分为多个子任务,多个子任务共享网络结构,相互促进学习,提高模型的泛化性能。实验表明:该模型对周期性活动的识别准确率可达到94.6%,非周期性活动可达到93.4%,并发复杂活动可达到92.8%。该模型比3个基线模型的识别准确率平均高出8%。
关键词
复杂人体活动识别
多传感器数据融合
深度学习
多任务学习
Keywords
complex human activity recognition
multi-sensor data fusion
deep learning
multi-task learning
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
多传感器数据融合的复杂人体活动识别
宋欣瑞
张宪琦
张展
陈新昊
刘宏伟
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020
12
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部