The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the t...The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.展开更多
Topological entropy can be an indicator of complicated behavior in dynamical systems. It is first introduce by Adler, Konheim and McAndrew by using open covers in 1965. After that it is still an active research by man...Topological entropy can be an indicator of complicated behavior in dynamical systems. It is first introduce by Adler, Konheim and McAndrew by using open covers in 1965. After that it is still an active research by many researchers to produce more properties and applications up to nowadays. The purpose of this paper is to review and explain most important concepts and results of topological entropies of continuous self-maps for dynamical systems on compact and non-compact topological and metric spaces. We give proofs for some of its elementary properties of the topological entropy. Slight modification on Adler's topological entropy is also presented.展开更多
This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also co...This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also contain isolated nodes and clusters. By using suitable controllers, sufficient conditions for finite-time generalized outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the synchronization time is also numerically demonstrated.展开更多
基金supported by National Natural Science Foundation of China under Grant No. 10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.
文摘Topological entropy can be an indicator of complicated behavior in dynamical systems. It is first introduce by Adler, Konheim and McAndrew by using open covers in 1965. After that it is still an active research by many researchers to produce more properties and applications up to nowadays. The purpose of this paper is to review and explain most important concepts and results of topological entropies of continuous self-maps for dynamical systems on compact and non-compact topological and metric spaces. We give proofs for some of its elementary properties of the topological entropy. Slight modification on Adler's topological entropy is also presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61203304,61203055 and 10901145the Fundamental Research Funds for the Central Universities under Grant Nos.2011QNA26,2010LKSX04,and 2010LKSX01
文摘This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also contain isolated nodes and clusters. By using suitable controllers, sufficient conditions for finite-time generalized outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the synchronization time is also numerically demonstrated.