期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于混合像元空间与谱间相关性模型的NMF线性盲解混
被引量:
5
1
作者
袁博
《测绘学报》
EI
CSCD
北大核心
2019年第9期1151-1160,共10页
基于相关性分析的高光谱解混算法,通常缺少对高光谱图像空间和光谱相关性特征的综合分析与利用,或对于先验知识的依赖程度较高。本文提出一种基于混合像元空间与谱间相关性模型的NMF线性盲解混算法。具体包括:通过改进马尔科夫随机场(M...
基于相关性分析的高光谱解混算法,通常缺少对高光谱图像空间和光谱相关性特征的综合分析与利用,或对于先验知识的依赖程度较高。本文提出一种基于混合像元空间与谱间相关性模型的NMF线性盲解混算法。具体包括:通过改进马尔科夫随机场(MRF)模型,建立相邻像元间的空间相关模型;利用复杂度映射技术,建立相邻波段间的光谱相关模型;在NMF目标函数外部和内部分别引入上述两种模型,作为盲解混算法的约束条件。试验结果表明,该算法相对于区域相关的NMF解混算法(ACBNMF)、最小化光谱相关度约束的NMF方法(MSCCNMF)和最小体积约束的非负矩阵分解(MVCNMF)等代表性NMF解混参考算法,解混精度有所提高;同时,降低了对于先验知识的依赖程度,拓宽了适用范围。
展开更多
关键词
非负矩阵分解
空间相关性
谱间相关性
马尔科夫随机场
复杂度映射
下载PDF
职称材料
空间与谱间相关性分析的NMF高光谱解混
被引量:
14
2
作者
袁博
《遥感学报》
EI
CSCD
北大核心
2018年第2期265-276,共12页
非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问...
非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问题,引入并结合高光谱图像两种典型的相关性特征,具体包括:基于马尔可夫随机场(MRF)模型,建立描述相邻像元空间相关特征的约束;通过复杂度映射技术,建立描述相邻波段谱间相关(光谱分段平滑)特征的约束;并将上述两种约束同时引入NMF解混目标函数中。实验结果表明,对于一般自然地物场景或人造地物场景,相对于分段平滑和稀疏约束的非负矩阵分解(PSNMFSC)、交互投影子梯度的非负矩阵分解(APSNMF)和最小体积约束的非负矩阵分解(MVCNMF)这3种代表性NMF解混参考算法,该算法可进一步提高高光谱解混精度;对于空间相关或谱间相关特征中某一种不显著的特殊场景,也具有更好的适应能力。通过将空间相关和谱间相关特征相结合,较全面地反映了高光谱数据与解混相关的重要特征,能够对绝大多数真实高光谱数据进行高精度解混,对高光谱解混及后续应用领域相关研究均具有参考价值。
展开更多
关键词
非负矩阵分解
像元解混
空间相关性
谱间相关性
马尔可夫随机场
复杂度映射
原文传递
题名
基于混合像元空间与谱间相关性模型的NMF线性盲解混
被引量:
5
1
作者
袁博
机构
南阳理工学院计算机与信息工程学院
出处
《测绘学报》
EI
CSCD
北大核心
2019年第9期1151-1160,共10页
基金
国家自然科学基金(41371353)~~
文摘
基于相关性分析的高光谱解混算法,通常缺少对高光谱图像空间和光谱相关性特征的综合分析与利用,或对于先验知识的依赖程度较高。本文提出一种基于混合像元空间与谱间相关性模型的NMF线性盲解混算法。具体包括:通过改进马尔科夫随机场(MRF)模型,建立相邻像元间的空间相关模型;利用复杂度映射技术,建立相邻波段间的光谱相关模型;在NMF目标函数外部和内部分别引入上述两种模型,作为盲解混算法的约束条件。试验结果表明,该算法相对于区域相关的NMF解混算法(ACBNMF)、最小化光谱相关度约束的NMF方法(MSCCNMF)和最小体积约束的非负矩阵分解(MVCNMF)等代表性NMF解混参考算法,解混精度有所提高;同时,降低了对于先验知识的依赖程度,拓宽了适用范围。
关键词
非负矩阵分解
空间相关性
谱间相关性
马尔科夫随机场
复杂度映射
Keywords
nonnegative matrix factorization
spatial correlation
spectral correlation
Markov random field
complexity mapping
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
空间与谱间相关性分析的NMF高光谱解混
被引量:
14
2
作者
袁博
机构
南阳理工学院计算机与信息工程学院
出处
《遥感学报》
EI
CSCD
北大核心
2018年第2期265-276,共12页
基金
国家自然科学基金(编号:41371353)~~
文摘
非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问题,引入并结合高光谱图像两种典型的相关性特征,具体包括:基于马尔可夫随机场(MRF)模型,建立描述相邻像元空间相关特征的约束;通过复杂度映射技术,建立描述相邻波段谱间相关(光谱分段平滑)特征的约束;并将上述两种约束同时引入NMF解混目标函数中。实验结果表明,对于一般自然地物场景或人造地物场景,相对于分段平滑和稀疏约束的非负矩阵分解(PSNMFSC)、交互投影子梯度的非负矩阵分解(APSNMF)和最小体积约束的非负矩阵分解(MVCNMF)这3种代表性NMF解混参考算法,该算法可进一步提高高光谱解混精度;对于空间相关或谱间相关特征中某一种不显著的特殊场景,也具有更好的适应能力。通过将空间相关和谱间相关特征相结合,较全面地反映了高光谱数据与解混相关的重要特征,能够对绝大多数真实高光谱数据进行高精度解混,对高光谱解混及后续应用领域相关研究均具有参考价值。
关键词
非负矩阵分解
像元解混
空间相关性
谱间相关性
马尔可夫随机场
复杂度映射
Keywords
Nonnegative Matrix Factorization(NMF), pixel un-mixing, spatial correlation, spectral correlation, Markov Random Field(MRF), complexity mapping
分类号
TP701 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于混合像元空间与谱间相关性模型的NMF线性盲解混
袁博
《测绘学报》
EI
CSCD
北大核心
2019
5
下载PDF
职称材料
2
空间与谱间相关性分析的NMF高光谱解混
袁博
《遥感学报》
EI
CSCD
北大核心
2018
14
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部