A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de...A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.展开更多
A Boolean function /(x1,x2,…,xn) is said to be elusive, if every decision tree algorithm computing / must examine all n variables in the worst case. In 1988, A.C.C. Yao introduced a question: Is any nontrivial monoto...A Boolean function /(x1,x2,…,xn) is said to be elusive, if every decision tree algorithm computing / must examine all n variables in the worst case. In 1988, A.C.C. Yao introduced a question: Is any nontrivial monotone Boolean function that is invariant under the transitive act of group Cm × Cn elusive? The positive answer to this question supports the famous Rivest-Vuillemin conjecture on decision tree complexity. In this paper, we shall partly answer this question.展开更多
This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The ma...This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.展开更多
基金Project(61101185)supported by the National Natural Science Foundation of China
文摘A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.
基金Supported by the National Natural Science Foundation of China (10171095) Foundation of Chinese Academy of Science (J2001), and Foundation of GSCAS
文摘A Boolean function /(x1,x2,…,xn) is said to be elusive, if every decision tree algorithm computing / must examine all n variables in the worst case. In 1988, A.C.C. Yao introduced a question: Is any nontrivial monotone Boolean function that is invariant under the transitive act of group Cm × Cn elusive? The positive answer to this question supports the famous Rivest-Vuillemin conjecture on decision tree complexity. In this paper, we shall partly answer this question.
基金supported by the Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.