Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc...Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.展开更多
We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-K¨ahler structure.Using intersecting complex toric surfaces,we derive a class of N =1 quivers with charged fundamen...We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-K¨ahler structure.Using intersecting complex toric surfaces,we derive a class of N =1 quivers with charged fundamental matter placed on external nodes.The emphasis is on how local Calabi–Yau equations solve the corresponding physical constraints including the anomaly cancelation condition.Concretely,a linear chain of SU(N) groups with flavor symmetries has been constructed using polyvalent toric geometry.展开更多
基金sponsored by National Science and Technology Major Project(2011ZX05046-001)
文摘Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.
文摘We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-K¨ahler structure.Using intersecting complex toric surfaces,we derive a class of N =1 quivers with charged fundamental matter placed on external nodes.The emphasis is on how local Calabi–Yau equations solve the corresponding physical constraints including the anomaly cancelation condition.Concretely,a linear chain of SU(N) groups with flavor symmetries has been constructed using polyvalent toric geometry.