Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations ha...Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.展开更多
This article explores the concept of sects as social formations and the process of secularization sects has been undergone in the modern era, implying their exposition to political manipulation by various internal and...This article explores the concept of sects as social formations and the process of secularization sects has been undergone in the modern era, implying their exposition to political manipulation by various internal and external actors. We analyse this subject in the context of the modern Syrian State and, in particular, with reference to the political system established by President Hafez al-Asad in the 70’s. The use of sectarian ties appears as part of the regime patrimonial features, being a political strategy used in order to bind particular society’s groups to the regime. In this sense, sectarianism has nothing to do with religion and it requires to be analysed as a socio-political phenomenon. This kind of analysis permits also to confute the identification between the Asad regime and the Alawite community and to understand the complexity of the relation between the President and the community he originated from.展开更多
.GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN alg....GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN algorithm. The algorithm firstly get the network center nodes set, then use the shortest paths between center nodes and other nodes to calculate the edge betweenness, and then use incremental module degree as the algorithm terminates standard. Experiments show that, the new algorithm not only ensures accuracy of network community division, but also greatly reduced the time complexity, and improves the efficiency of community division.展开更多
Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since vario...Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks.展开更多
基金supported by the grants from Natural Science Foundation of China (Project No.61471060)
文摘Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.
文摘This article explores the concept of sects as social formations and the process of secularization sects has been undergone in the modern era, implying their exposition to political manipulation by various internal and external actors. We analyse this subject in the context of the modern Syrian State and, in particular, with reference to the political system established by President Hafez al-Asad in the 70’s. The use of sectarian ties appears as part of the regime patrimonial features, being a political strategy used in order to bind particular society’s groups to the regime. In this sense, sectarianism has nothing to do with religion and it requires to be analysed as a socio-political phenomenon. This kind of analysis permits also to confute the identification between the Asad regime and the Alawite community and to understand the complexity of the relation between the President and the community he originated from.
文摘.GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN algorithm. The algorithm firstly get the network center nodes set, then use the shortest paths between center nodes and other nodes to calculate the edge betweenness, and then use incremental module degree as the algorithm terminates standard. Experiments show that, the new algorithm not only ensures accuracy of network community division, but also greatly reduced the time complexity, and improves the efficiency of community division.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos 10631070, 60873205, 10701080, and the Beijing Natural Science Foundation under Grant No. 1092011. It is also partially supported by the Foundation of Beijing Education Commission under Grant No. SM200910037005, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201006217), and the Foundation of WYJD200902.
文摘Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks.