We carry out an analysis of the canonical system of a minimal complex surface S of general type with irregularity q > 0.Using this analysis,we are able to sharpen in the case q > 0 the well-known Castelnuovo ine...We carry out an analysis of the canonical system of a minimal complex surface S of general type with irregularity q > 0.Using this analysis,we are able to sharpen in the case q > 0 the well-known Castelnuovo inequality KS2≥3pg(S) + q(S)-7.Then we turn to the study of surfaces with pg=2q-3 and no fibration onto a curve of genus > 1.We prove that for q≥6 the canonical map is birational.Combining this result with the analysis of the canonical system,we also prove the inequality:KS2≥7χ(S) + 2.This improves an earlier result of Mendes Lopes and Pardini (2010).展开更多
In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained...In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained. When R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out, while R0 is greater than one, the disease-free equilibrium becomes unstable and the disease is permanent, and in the meantime there exists a unique endemic equilibrium which is globally attrac- tive under certain conditions. Finally, the effects of various immunization schemes are studied. To verify our theoretical results, the corresponding numerical simulations are also included.展开更多
基金supported by FCT (Portugal) through program POCTI/FEDER and Project PTDC/MAT/099275/2008by MIUR (Italy) through project PRIN 2007 "Spazi di moduli e teorie di Lie"
文摘We carry out an analysis of the canonical system of a minimal complex surface S of general type with irregularity q > 0.Using this analysis,we are able to sharpen in the case q > 0 the well-known Castelnuovo inequality KS2≥3pg(S) + q(S)-7.Then we turn to the study of surfaces with pg=2q-3 and no fibration onto a curve of genus > 1.We prove that for q≥6 the canonical map is birational.Combining this result with the analysis of the canonical system,we also prove the inequality:KS2≥7χ(S) + 2.This improves an earlier result of Mendes Lopes and Pardini (2010).
文摘In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained. When R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out, while R0 is greater than one, the disease-free equilibrium becomes unstable and the disease is permanent, and in the meantime there exists a unique endemic equilibrium which is globally attrac- tive under certain conditions. Finally, the effects of various immunization schemes are studied. To verify our theoretical results, the corresponding numerical simulations are also included.