线结构光三维扫描建模系统中最关键的一步是提取光条中心线,但环境中各种因素的干扰给中心线提取带来困难。针对线结构光条纹图像存在光斑干扰、光强分布不均、光条宽度差别大、背景复杂等多种问题,提出解决方案。首先采用Otsu对结构光...线结构光三维扫描建模系统中最关键的一步是提取光条中心线,但环境中各种因素的干扰给中心线提取带来困难。针对线结构光条纹图像存在光斑干扰、光强分布不均、光条宽度差别大、背景复杂等多种问题,提出解决方案。首先采用Otsu对结构光图像二值化;其次采用改进DBSCAN(density-based spatial clustering of applications with noise)算法保留核心点,去除边界点和噪声点;最后将核心点作为输入,构建图数据结构,采用适用于线结构光条纹图像的最短路径搜索算法得到光条中心线。实验结果表明,该算法运行时间在150 ms以内,误差在0.2像素以内,并适用于多种复杂环境,满足实时性、准确性和稳定性的要求。展开更多
针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算...针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。展开更多
文摘线结构光三维扫描建模系统中最关键的一步是提取光条中心线,但环境中各种因素的干扰给中心线提取带来困难。针对线结构光条纹图像存在光斑干扰、光强分布不均、光条宽度差别大、背景复杂等多种问题,提出解决方案。首先采用Otsu对结构光图像二值化;其次采用改进DBSCAN(density-based spatial clustering of applications with noise)算法保留核心点,去除边界点和噪声点;最后将核心点作为输入,构建图数据结构,采用适用于线结构光条纹图像的最短路径搜索算法得到光条中心线。实验结果表明,该算法运行时间在150 ms以内,误差在0.2像素以内,并适用于多种复杂环境,满足实时性、准确性和稳定性的要求。
文摘针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。