Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well...Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.展开更多
Unbalanced inputs and outputs of material are the root cause of habitat degradation in Sansha Bay,Fujian Province,China. However,the cumulative pollution varies in different geographic locations and natural conditions...Unbalanced inputs and outputs of material are the root cause of habitat degradation in Sansha Bay,Fujian Province,China. However,the cumulative pollution varies in different geographic locations and natural conditions in the enclosed bay. In this study,hydrodynamic conditions,sediment characteristics,and aquaculture methods were recognized as the underlying causes of spatial heterogeneity in the distribution of nitrogen and phosphorous pollutants,the two major controlling factors of habitat degradation in the bay area. In order to achieve the goal of balancing nutrient inputs and outputs in Sansha Bay,we developed a feasible and practical zone restoration strategy for reasonable adjustment and arrangement of aquaculture species and production scale in accordance with varying hydrodynamic conditions and sediment characteristics in six sub-bay areas(sub-systems). The proposed zone restoration strategy lays a solid foundation for habitat restoration and management in Sansha Bay.展开更多
To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differ...To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.展开更多
Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. T...Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. The immobilization of laccase was successfully realized when 3.0 mL of 1.25 mg/mL of laccase at a pH value of 4.0 reacted with 0.15 g of ceramic-chitosan composite support(CCCS) at 4 ℃ for 24 h. The immobilized enzyme exhibited a maximum activity at pH 3.0. The optimal temperatures for immobilized enzyme were 25 ℃ and 50 ℃. The K_m value of immobilized laccase for ABTS was 66.64 μmol/L at a pH value of 3.0 at 25 ℃. Compared with free laccase, the thermal, operating and storage stability of immobilized laccase was improved after the immobilization.展开更多
基金National Natural Science Foundation of China(Nos.51405079)China Postdoctoral Science Foundation of China(No.2015M570307)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Jiangsu Planned Projects for Postdoctoral Research Funds,China
文摘Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.
基金Supported by the Projects of Public Science and Technology Research Funds of Ocean Sector of China(No.201205009)the National Natural Science Foundation of China(No.41201569)
文摘Unbalanced inputs and outputs of material are the root cause of habitat degradation in Sansha Bay,Fujian Province,China. However,the cumulative pollution varies in different geographic locations and natural conditions in the enclosed bay. In this study,hydrodynamic conditions,sediment characteristics,and aquaculture methods were recognized as the underlying causes of spatial heterogeneity in the distribution of nitrogen and phosphorous pollutants,the two major controlling factors of habitat degradation in the bay area. In order to achieve the goal of balancing nutrient inputs and outputs in Sansha Bay,we developed a feasible and practical zone restoration strategy for reasonable adjustment and arrangement of aquaculture species and production scale in accordance with varying hydrodynamic conditions and sediment characteristics in six sub-bay areas(sub-systems). The proposed zone restoration strategy lays a solid foundation for habitat restoration and management in Sansha Bay.
基金The Nattional Key Scientific Program-Nanoscience and Nanotechnologygrant number:2009CB930000
文摘To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.
文摘Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. The immobilization of laccase was successfully realized when 3.0 mL of 1.25 mg/mL of laccase at a pH value of 4.0 reacted with 0.15 g of ceramic-chitosan composite support(CCCS) at 4 ℃ for 24 h. The immobilized enzyme exhibited a maximum activity at pH 3.0. The optimal temperatures for immobilized enzyme were 25 ℃ and 50 ℃. The K_m value of immobilized laccase for ABTS was 66.64 μmol/L at a pH value of 3.0 at 25 ℃. Compared with free laccase, the thermal, operating and storage stability of immobilized laccase was improved after the immobilization.