Au nanoparticle(Au NP)@SiO2@TDA-Eu nanocomposites were prepared by a two-step process: Au NP@SiO2 nanocomposites were prepared by a modified onepot process. Then the europium coordination polymer was deposited on t...Au nanoparticle(Au NP)@SiO2@TDA-Eu nanocomposites were prepared by a two-step process: Au NP@SiO2 nanocomposites were prepared by a modified onepot process. Then the europium coordination polymer was deposited on the surface of the Au NP@SiO2 by mixing 2,2'-thiodiacetic acid [S(CH2 COO)2^(2-), TDA] and Eu(NO3)3·6 H2 O in ethanol via a hydrothermal method. The maximum fluorescent enhancement factor of the nanocomposites was 6.81 at 30 nm thickness of silica between the core of the Au NP and the shell of TDA-Eu. The prepared nanocomposites exhibit more sensitive monitoring of reactive oxygen species.展开更多
基金financially supported by the National Natural Science Foundation of China (51702006 and 21501141)the Doctoral research project (ZK2017027) of Baoji University of Arts and Sciencesthe Education Commission of Shaanxi Province (2015JQ6223,12JS114,14JS092 and 17JS009)
文摘Au nanoparticle(Au NP)@SiO2@TDA-Eu nanocomposites were prepared by a two-step process: Au NP@SiO2 nanocomposites were prepared by a modified onepot process. Then the europium coordination polymer was deposited on the surface of the Au NP@SiO2 by mixing 2,2'-thiodiacetic acid [S(CH2 COO)2^(2-), TDA] and Eu(NO3)3·6 H2 O in ethanol via a hydrothermal method. The maximum fluorescent enhancement factor of the nanocomposites was 6.81 at 30 nm thickness of silica between the core of the Au NP and the shell of TDA-Eu. The prepared nanocomposites exhibit more sensitive monitoring of reactive oxygen species.