It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in ...It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.展开更多
Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correc...Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correctness), and finally, define the control tests of non degradation of the method performances. This paper outlines the steps for validating a biological method of analysis. It involves the construction of an experimental design, a statistical model, and the preparation of an interne laboratory reference material (pilot vaccine). The latter is used to study the impact of deviation and variation factors, in order to, optimize the analytical method, to evaluate the bias (random error), and to calculate the uncertainty of measurement, and make the control charts. This method is applied in the titration of live viral vaccines of Gumboro disease on chicken's embryos fibroblasts. The experimental results show that potential influence factors related to the titration method had no significant influence on the obtained results. Taking into account these results, an operating mode has been elaborated. The finalized method proved to be faithful to standard deviation of repeatability and reproducibility of 0.21 and 0.22, respectively, with a confidence level of 95%. The calculated uncertainty of measurement is equal to 0.2, which represents the average error level of a titer. A homogeneous stock of interne laboratory reference vaccine (MRIL), with an average titer of 5.9 log DIT 50, was produced and the control chart set in away to provide the laboratory with an important tool of control and monitoring of the viral titers evolution in time, as well as, the mastery of the validated titration method performances.展开更多
This study proposes a deep learning-based approach for shaft resistance evaluation of cast-in-site piles on reclaimed ground,independent of theoretical hypotheses and engineering experience.A series of field tests was...This study proposes a deep learning-based approach for shaft resistance evaluation of cast-in-site piles on reclaimed ground,independent of theoretical hypotheses and engineering experience.A series of field tests was first performed to investigate the characteristics of the shaft resistance of cast-in-site piles on reclaimed ground.Then,an intelligent approach based on the long short term memory deep-learning technique was proposed to calculate the shaft resistance of the cast-in-site pile.The proposed method allows accurate estimation of the shaft resistance of cast-in-site piles,not only under the ultimate load but also under the working load.Comparisons with empirical methods confirmed the effectiveness of the proposed method for the shaft resistance estimation of cast-in-site piles on reclaimed ground in offshore areas.展开更多
基金provided by the National Natural Science Foundation of China (No. 51174195)the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM08X04)+1 种基金the Science Foundation for Youth of China University of Mining &Technology (No. 2008A02)supported by China Scholarship Council for High-Level University Program (No.CSC[2010] 3006)
文摘It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.
文摘Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correctness), and finally, define the control tests of non degradation of the method performances. This paper outlines the steps for validating a biological method of analysis. It involves the construction of an experimental design, a statistical model, and the preparation of an interne laboratory reference material (pilot vaccine). The latter is used to study the impact of deviation and variation factors, in order to, optimize the analytical method, to evaluate the bias (random error), and to calculate the uncertainty of measurement, and make the control charts. This method is applied in the titration of live viral vaccines of Gumboro disease on chicken's embryos fibroblasts. The experimental results show that potential influence factors related to the titration method had no significant influence on the obtained results. Taking into account these results, an operating mode has been elaborated. The finalized method proved to be faithful to standard deviation of repeatability and reproducibility of 0.21 and 0.22, respectively, with a confidence level of 95%. The calculated uncertainty of measurement is equal to 0.2, which represents the average error level of a titer. A homogeneous stock of interne laboratory reference vaccine (MRIL), with an average titer of 5.9 log DIT 50, was produced and the control chart set in away to provide the laboratory with an important tool of control and monitoring of the viral titers evolution in time, as well as, the mastery of the validated titration method performances.
基金the Research Funding of Shantou University for New Faculty Member(No.NTF19024-2019)the National Nature Science Foundation of China(No.41372283)。
文摘This study proposes a deep learning-based approach for shaft resistance evaluation of cast-in-site piles on reclaimed ground,independent of theoretical hypotheses and engineering experience.A series of field tests was first performed to investigate the characteristics of the shaft resistance of cast-in-site piles on reclaimed ground.Then,an intelligent approach based on the long short term memory deep-learning technique was proposed to calculate the shaft resistance of the cast-in-site pile.The proposed method allows accurate estimation of the shaft resistance of cast-in-site piles,not only under the ultimate load but also under the working load.Comparisons with empirical methods confirmed the effectiveness of the proposed method for the shaft resistance estimation of cast-in-site piles on reclaimed ground in offshore areas.