In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
In order to reduce the cost of Radio Frequency (RF) chains in the spatial multiplexing systems with Vertical-Bell Labs Layered Space-Time (V-BLAST) nonlinear receiver, a novel transmit antenna selection cri-terion is ...In order to reduce the cost of Radio Frequency (RF) chains in the spatial multiplexing systems with Vertical-Bell Labs Layered Space-Time (V-BLAST) nonlinear receiver, a novel transmit antenna selection cri-terion is proposed with the motivation of minimizing the Vector Symbol Error Rate (VSER). In the proposed scheme, both the number of substreams and the mapping of substreams to antennas are dynamically adjusted based on the knowledge of channel. Simulation results illustrate that the proposed two-step selection criterion outperforms the existing eigenmode based selection criterion by 0.3dB at a VSER of 10?3.展开更多
A service life model of NAND flash and threshold voltage shift process is proposed to calculate the service life and endurance.The relationships among achievable program/erase(P/E) cycles,recovery time,bad block rate ...A service life model of NAND flash and threshold voltage shift process is proposed to calculate the service life and endurance.The relationships among achievable program/erase(P/E) cycles,recovery time,bad block rate and storage time are analyzed.The achievable endurance and service life of a NAND flash are evaluated based on a flash cell degradation and recovery model by varying recovery time,badblock rate,and storage time.It is proposed to improve the service lifetime of solid state disk by both relaxing the bad block rate limitation and retention time while extending the recovery time.The results indicate that endurance can be improved by 17 times if the storage time guarantee is reduced from 10 a to 1 a with 105 s recovery time inserted between cycles.展开更多
Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time wi...Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time window with low insert loss, low phase noise, low timing-jitter and high speed performance is essential for ultra-high speed OTDM systems using phase and amplitude modulation formats. In this paper, we review three promising methods to obtain 40 GHz short time window including Electro-Absorption Modulator (EAM), Dual-Parallel Mach-Zehnder Modulator (DPMZM) and Fiber Loop-Polarization Modulator (FL-PolM). Sub-picosecond short pulse source generation, optical time division denlaltiplexing and clock recovery are realized respectively by using the short time window based on the three methods. By using DPMZM based pulse source and EAM based Clock Recovery (CR) and dermltiplexer, error free transmission of 640 Goit/s (160 Gbaud/s Pol-Mux DQPSK) single channel signal over 400 km single mode fiber is proven to be experimentally successful.展开更多
The Bit Error Rate (BER) caused by Inter Carrier Interference (ICI) increases greatly with the increase of frequency offset in Orthogonal Frequency Division Multiplexing (OFDM) systems. According to a typical OFDM sig...The Bit Error Rate (BER) caused by Inter Carrier Interference (ICI) increases greatly with the increase of frequency offset in Orthogonal Frequency Division Multiplexing (OFDM) systems. According to a typical OFDM signal model, this letter proves that the coefficient matrix of ICI is a unitary matrix whose inverse matrix is much easier to get, and then proposes a new ICI cancellation method with less computation complexity by sending typical pilot symbols. Compared with two existing ICI cancellation methods, self-cancellation and windowing cancellation, it is shown that the proposed algorithm can cancel ICI better and overcome the limitation of the two traditional methods.展开更多
The problem of transmission power control in a rate-aware way is investigated to improve the throughput of wireless ad hoc network. The behavior of basic IEEE 802.11 DCF is approximated by the p-persistent CSMA throug...The problem of transmission power control in a rate-aware way is investigated to improve the throughput of wireless ad hoc network. The behavior of basic IEEE 802.11 DCF is approximated by the p-persistent CSMA through a Markov chain model. The throughput model takes hidden terminals, muhi-hop flow and concurrent interference into account. Numerical results show that the optimal transmission power derived from this model could balance the tradeoff between spatial reuse and data rate and hence yield maximum throughput.展开更多
A 32-channel 50 GHz spaced arrayed-waveguide grating(AWG) with our innovative configuration has been designed and fabricated.The performance of the device has been fully tested by using a system that consists of a tun...A 32-channel 50 GHz spaced arrayed-waveguide grating(AWG) with our innovative configuration has been designed and fabricated.The performance of the device has been fully tested by using a system that consists of a tunable laser light source (TLS), an optical power meter and a polarization controller.The insertion loss (IS) of the device is 4.2-7.4 dB.The crosstalk is about -28 dB.The IS uniformity is less than 3.3 dB.With our configuration,the performance of the device has been enhanced effectively and the difficulty in alignment process has been decreased obviously.展开更多
This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new netw...This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new network model. With this net-work model, the multi-channel wireless network is divided into several subnets according to the num-ber of channels. Based on this, we present a link allocation algorithm with time complexity O(l^2)to al-locate all links to subnets. This link allocation algo-rithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optirml al-gorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802.11b and slotted see-ded channel hopping algorithm, our algorithm de-creases network conflicts and improves the net-work throughput significantly.展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmi...This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.展开更多
Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rat...Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.展开更多
In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple ...In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.展开更多
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.
基金Supported by the National Natural Science Foundation of China (No.60372055) and the National High Tech-nology Research and Development (863) Project of China (No.2003AA123320).
文摘In order to reduce the cost of Radio Frequency (RF) chains in the spatial multiplexing systems with Vertical-Bell Labs Layered Space-Time (V-BLAST) nonlinear receiver, a novel transmit antenna selection cri-terion is proposed with the motivation of minimizing the Vector Symbol Error Rate (VSER). In the proposed scheme, both the number of substreams and the mapping of substreams to antennas are dynamically adjusted based on the knowledge of channel. Simulation results illustrate that the proposed two-step selection criterion outperforms the existing eigenmode based selection criterion by 0.3dB at a VSER of 10?3.
基金Project(61171017)supported by the National Natural Science Foundation of China
文摘A service life model of NAND flash and threshold voltage shift process is proposed to calculate the service life and endurance.The relationships among achievable program/erase(P/E) cycles,recovery time,bad block rate and storage time are analyzed.The achievable endurance and service life of a NAND flash are evaluated based on a flash cell degradation and recovery model by varying recovery time,badblock rate,and storage time.It is proposed to improve the service lifetime of solid state disk by both relaxing the bad block rate limitation and retention time while extending the recovery time.The results indicate that endurance can be improved by 17 times if the storage time guarantee is reduced from 10 a to 1 a with 105 s recovery time inserted between cycles.
基金Acknowledgements This paper was partially supported by the Hi-Tech Research andDevelopment Program of China under Grant No. 2012AA011303 the National Natural Science Foundation of China under Crants No. 61001121, No. 60932004, No. 61006041+1 种基金 the National Key Basic Research Program of China under Grant No. 2011CB301702 the Fundamental Research Funds for the Central Universities.
文摘Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time window with low insert loss, low phase noise, low timing-jitter and high speed performance is essential for ultra-high speed OTDM systems using phase and amplitude modulation formats. In this paper, we review three promising methods to obtain 40 GHz short time window including Electro-Absorption Modulator (EAM), Dual-Parallel Mach-Zehnder Modulator (DPMZM) and Fiber Loop-Polarization Modulator (FL-PolM). Sub-picosecond short pulse source generation, optical time division denlaltiplexing and clock recovery are realized respectively by using the short time window based on the three methods. By using DPMZM based pulse source and EAM based Clock Recovery (CR) and dermltiplexer, error free transmission of 640 Goit/s (160 Gbaud/s Pol-Mux DQPSK) single channel signal over 400 km single mode fiber is proven to be experimentally successful.
文摘The Bit Error Rate (BER) caused by Inter Carrier Interference (ICI) increases greatly with the increase of frequency offset in Orthogonal Frequency Division Multiplexing (OFDM) systems. According to a typical OFDM signal model, this letter proves that the coefficient matrix of ICI is a unitary matrix whose inverse matrix is much easier to get, and then proposes a new ICI cancellation method with less computation complexity by sending typical pilot symbols. Compared with two existing ICI cancellation methods, self-cancellation and windowing cancellation, it is shown that the proposed algorithm can cancel ICI better and overcome the limitation of the two traditional methods.
基金the National High Technology Research and Development Programme of China(No.2004AA104280.2006AA01Z172)
文摘The problem of transmission power control in a rate-aware way is investigated to improve the throughput of wireless ad hoc network. The behavior of basic IEEE 802.11 DCF is approximated by the p-persistent CSMA through a Markov chain model. The throughput model takes hidden terminals, muhi-hop flow and concurrent interference into account. Numerical results show that the optimal transmission power derived from this model could balance the tradeoff between spatial reuse and data rate and hence yield maximum throughput.
基金Project supported by Nation Key Basic R&D Plan of China(G2000036602) ,and the National Natural Science Foundation ofChina(No.69889701)
文摘A 32-channel 50 GHz spaced arrayed-waveguide grating(AWG) with our innovative configuration has been designed and fabricated.The performance of the device has been fully tested by using a system that consists of a tunable laser light source (TLS), an optical power meter and a polarization controller.The insertion loss (IS) of the device is 4.2-7.4 dB.The crosstalk is about -28 dB.The IS uniformity is less than 3.3 dB.With our configuration,the performance of the device has been enhanced effectively and the difficulty in alignment process has been decreased obviously.
基金This work was supported by the National Natural Science Foundation of China under Cxant No. 60902010 the Research Fund of State Key Laboratory of Mobile Communications un-der Crant No. 2012A03.
文摘This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new network model. With this net-work model, the multi-channel wireless network is divided into several subnets according to the num-ber of channels. Based on this, we present a link allocation algorithm with time complexity O(l^2)to al-locate all links to subnets. This link allocation algo-rithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optirml al-gorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802.11b and slotted see-ded channel hopping algorithm, our algorithm de-creases network conflicts and improves the net-work throughput significantly.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
基金the Specialized Research Fund for the Doctoral Program of Higher Education, China Ministry of Education (No.20030003039).
文摘This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.
基金Project(40927001)supported by the National Natural Science Foundation of ChinaProject(2011R09021-06)supported by the Program of Key Scientific and Technological Innovation Team of Zhejiang Province,ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.