Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt...Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.展开更多
The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s...The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.展开更多
The friction and wear properties of the C/Cu composite material were investigated. The experiments were conducted on a block on ring type friction machine. It has been found that the friction coefficient and the wea...The friction and wear properties of the C/Cu composite material were investigated. The experiments were conducted on a block on ring type friction machine. It has been found that the friction coefficient and the wear rate of the composite material increase slowly as the pressure is increased in a mild wear state. Scanning electron microscopy and electron probe X ray micro analyzer observations indicate that the low values of μ and W L are due to the formation of a film that impedes adhesion and confers some degree of self lubrication.展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ...Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder ble...A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.展开更多
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial sa...A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.展开更多
The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix...The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.展开更多
The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to r...The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to realize the rapid generation of roughing/finishing tool path for molar prosthesis. Simulation results show that the proposed algorithm prossesses characteristics of excellent stabilization, fast calculation speed and high machining accuracy.展开更多
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(2011M500127)supported by the China Postdoctoral Science Foundation+2 种基金Projects(51102089,50802115)supported by the National Natural Science Foundation of ChinaProjects(12JJ4046,12JJ9014)supported by the Natural Science Foundation of Hunan Province,ChinaProject(74341015817)supported by the Post-doctoral Fund of Central South University,China
文摘Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.
文摘The friction and wear properties of the C/Cu composite material were investigated. The experiments were conducted on a block on ring type friction machine. It has been found that the friction coefficient and the wear rate of the composite material increase slowly as the pressure is increased in a mild wear state. Scanning electron microscopy and electron probe X ray micro analyzer observations indicate that the low values of μ and W L are due to the formation of a film that impedes adhesion and confers some degree of self lubrication.
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
基金Project(51201143)supported by the National Natural Science Foundation of ChinaProject(SWJTU12BR004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
基金Project (2010CB731705) supported by the National Basic Research Program of China
文摘A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
基金Project(81170996)supported by the National Natural Science Foundation of China
文摘A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.
基金Project supported by the Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University), ChinaProject (GJJ11094) supported by Science Funds of Jiangxi Provincial Education Project on Department, China
文摘The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.
文摘The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to realize the rapid generation of roughing/finishing tool path for molar prosthesis. Simulation results show that the proposed algorithm prossesses characteristics of excellent stabilization, fast calculation speed and high machining accuracy.