期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Cu-20Ni-30Cr合金在700℃和800℃纯氧气中的氧化 被引量:7
1
作者 张学军 牛焱 吴维 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第8期1271-1274,共4页
研究了三元复相合金Cu-20Ni-30Cr(at%)在700℃和800℃纯氧气中的氧化行为。合金由三相组成,具有最大Cu浓度和最小Cr浓度的α相为合金的基体,中间浓度的Ni和Cr的β相和富Cr的γ相以颗粒状态分布在合金基体中。合金在2个温度下的氧化动力... 研究了三元复相合金Cu-20Ni-30Cr(at%)在700℃和800℃纯氧气中的氧化行为。合金由三相组成,具有最大Cu浓度和最小Cr浓度的α相为合金的基体,中间浓度的Ni和Cr的β相和富Cr的γ相以颗粒状态分布在合金基体中。合金在2个温度下的氧化动力学曲线偏离抛物线规律,其氧化增重随时间延长而降低,合金氧化速率随温度升高而加快。合金形成了复杂的氧化膜结构,外层为富Cu氧化物,中间层为尖晶石层,最内层为不规则但连续的Cr2O3膜。合金中的复相组织限制Cr在合金中的扩散,抑制了外氧化膜的形成。 展开更多
关键词 Cu-20Ni-30Cr 复组合金 高温氧化 氧化铬
下载PDF
Interface analysis of 7B52 Al alloy laminated composite fabricated by hot-roll bonding 被引量:9
2
作者 周古昕 郎玉婧 +4 位作者 郝洁 刘稳 王生 乔丽 陈敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1269-1275,共7页
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (... The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality. 展开更多
关键词 7B52 alurninium alloy laminated composite hot-roll bonding MICROSTRUCTURE interfacial analysis
下载PDF
Analysis of phase in Cu-15%Cr-0.24%Zr alloy 被引量:9
3
作者 毕莉明 刘平 +3 位作者 陈小红 刘新宽 李伟 马凤仓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1342-1348,共7页
The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron micr... The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix. 展开更多
关键词 Cu-Cr-Zr alloy as-cast structure in-situ composite precipitated phase
下载PDF
Microstructure and mechanical properties of AM60B magnesium alloy prepared by cyclic extrusion compression 被引量:4
4
作者 王丽萍 陈添 +3 位作者 姜文勇 冯义成 曹国剑 朱岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3200-3205,共6页
The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure ca... The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure can be effectively refined with increasing the number of CEC passes. Once a critical minimum grain size was achieved, subsequent passes did not have any noticeable refining effect. As expected, the fine-grained alloy has excellent mechanical properties. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of two-pass CEC formed alloy are 72.2, 183.7 MPa, 286.3 MPa and 14.0%, but those of as-cast alloy are 62.3, 64 MPa, 201 MPa and 11%, respectively. However, there is not a clear improvement of mechanical properties with further increase in number of CEC passes in AM60B alloy. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of four-pass CEC formed alloy are 73.5, 196 MPa, 297 MPa and 16%, respectively. 展开更多
关键词 magnesium alloy cyclic extrusion compression MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy 被引量:11
5
作者 Zhuang ZHAO Jing CHEN +3 位作者 Qiang ZHANG Hua TAN Xin LIN Wei-dong HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2613-2621,共9页
Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of las... Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower. 展开更多
关键词 laser additive repair Ti17 titanium alloy microstructure mechanical properties deformation behavior
下载PDF
Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route 被引量:4
6
作者 A.FATHY Omyma EL-KADY Moustafa M.M.MOHAMMED 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期46-53,共8页
The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fra... The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis. 展开更多
关键词 Al-Fe composite powder metallurgy MICROSTRUCTURE mechanical properties magnetic properties
下载PDF
Friction behavior of Ti-30Fe composites strengthened by TiC particles 被引量:4
7
作者 Sheng-hang XU Jing-wen QIU +3 位作者 Hui-bin ZHANG Hua-zhen CAO Guo-qu ZHENG Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期988-998,共11页
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and... Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials. 展开更多
关键词 TiC particle Ti-Fe based composite powder metallurgy MICROSTRUCTURE friction behavior
下载PDF
Corrosion influence on surface appearance and microstructure of compo cast ZA27/SiC_p composites in sodium chloride solution 被引量:2
8
作者 Biljana BOBIC Jelena BAJAT +1 位作者 Ilija BOBIC Bore JEGDIC 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1512-1521,共10页
The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The co... The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The composites with different contents of SiC micro-particles were synthesized via compo casting. Microstructural studies by means of optical microscopy (OM) and scanning electron microscopy (SEM) showed that corrosion occurred in the composite matrices, preferentially in regions of the η phase, rich in zinc. The corrosion processes did not affect the silicon carbide particles incorporated in the matrix alloy. According to the results of electrochemical polarization measurements, an increase in the content of SiC particles in the composite matrice has led to the lower corrosion resistance in the composites. 展开更多
关键词 metal-matrix composites ZA27 alloy CORROSION MICROSTRUCTURE polarization resistance corrosion rate
下载PDF
Microstructure and dry sliding wear behavior of Cu-Sn alloy reinforced with multiwalled carbon nanotubes 被引量:3
9
作者 H.M.MALLIKARJUNA K.T.KASHYAP +2 位作者 P.G.KOPPAD C.S.RAMESH R.KESHAVAMURTHY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1755-1764,共10页
Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocompo... Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs. 展开更多
关键词 Cu-Sn alloy carbon nanotube NANOCOMPOSITES powder metallurgy MICROSTRUCTURE sliding wear
下载PDF
Corrosion and tribocorrosion behavior of Ti6Al4V/xTiN composites for biomedical applications
10
作者 J.CHÁVEZ O.JIMÉNEZ +5 位作者 D.BRAVO-BARCENAS L.OLMOS F.ALVARADO-HERNÁNDEZ M.A.GONZÁLEZ A.BEDOLLA-JACUINDE M.FLORES 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期540-558,共19页
The corrosion and tribocorrosion behavior of Ti6Al4V/xTiN(x=0,5,10 and 15,vol.%)composites fabricated by solid-state sintering and their relationship with the microstructure and microhardness were investigated.Simulat... The corrosion and tribocorrosion behavior of Ti6Al4V/xTiN(x=0,5,10 and 15,vol.%)composites fabricated by solid-state sintering and their relationship with the microstructure and microhardness were investigated.Simulated body conditions such as a temperature of 37℃ and a simulated body fluid were used.The main results demonstrated a microstructural change caused by theα-Ti stabilization due to solid-solution of nitrogen(N)into the titanium(Ti)lattice,producing a maximum hardening effect up to 109%for the Ti64 matrix by using 15 vol.%TiN.Corrosion potentials of composites changed to more noble values with the TiN particle addition,while corrosion current density of samples increased as an effect of the remaining porosity,decreasing the corrosion resistance of materials.However,changes to a less passive behavior were observed for samples with 15 vol.%TiN.The non-passive behavior of composites resulted in the reduction of the potential drops during rubbing in tribocorrosion tests.Besides,an improvement of up to 88%of the wear rate of composites was seen from the solid-solution hardening.The results allowed to understand the relationship between composition and sintering parameters with the improved tribocorrosion performance of materials. 展开更多
关键词 Ti64 alloy COMPOSITES powder metallurgy microstructure CORROSION TRIBOCORROSION
下载PDF
Hybrid terahertz metamaterial structure formed by assembling a split ring resonator with a metal mesh 被引量:3
11
作者 XIONG Wei YAO Jun +1 位作者 LI Wei SHEN JingLing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第5期882-887,共6页
We propose a novel metamaterial structure operating at the terahertz band. This structure is assembled by a split ring resonator (SRR) with a metal mesh within a unit cell. Our experimental studies on the composite st... We propose a novel metamaterial structure operating at the terahertz band. This structure is assembled by a split ring resonator (SRR) with a metal mesh within a unit cell. Our experimental studies on the composite structure indicate that the coupling of the SRR and metal mesh significantly contribute to the transparency at the terahertz range. Moreover, we experimentally demonstrated the verity of transmission peak of this structure by changing the relative positions of the SRR and the metal mesh. The simulated electric field redistributions support the dependence between position of the two components and the transmission response. This study is the first to report a hybrid metamaterial structure consisting of an SRR array and a metal mesh within a unit cell. The designed process and resonance characteristics of this composite structure make it an excellent candidate for developing tunable terahertz components via integration with the MEMS (Micro Electronic Mechanical System) technology. 展开更多
关键词 TERAHERTZ hybrid metamaterial transmission
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部