Based on the theory of the complex variable functions, the analysis of non-axisymmetric thermal stresses in a finite matrix containing a circular inclusion with functionally graded interphase is presented by means of ...Based on the theory of the complex variable functions, the analysis of non-axisymmetric thermal stresses in a finite matrix containing a circular inclusion with functionally graded interphase is presented by means of the least square boundary collocation technique. The distribution of thermal stress for the functionally graded interphase layer with arbitrary radial material parameters is derived by using the method of piece-wise homogeneous layers when the finite matrix is subjected to uniform heat flow. The effects of matrix size, interphase thickness and compositional gradient on the interfacial thermal stress are discussed in detail. Numerical results show that the magnitude and distribution of interfacial thermal stress in the inclusion and matrix can be designed properly by controlling these parameters.展开更多
This paper deals with two topics mentioned in the title. First, it is proved that function f in L^P( Da) can be decomposed into a sum g + h, where Da is an angular domain in the complex plane, g and h are the non-t...This paper deals with two topics mentioned in the title. First, it is proved that function f in L^P( Da) can be decomposed into a sum g + h, where Da is an angular domain in the complex plane, g and h are the non-tangential limits of functions in H^P(Da) and H^P(aD^c) in the sense of LP(Da), respectively. Second, the sufficient and necessary conditions between boundary values of holomorphic functions and distributions in n-dimensional complex space are obtained.展开更多
Up to now,the most widely used method for transition prediction is the one based on linear stability theory.When it is applied to three-dimensional boundary layers,one has to choose the direction,or path,along which t...Up to now,the most widely used method for transition prediction is the one based on linear stability theory.When it is applied to three-dimensional boundary layers,one has to choose the direction,or path,along which the growth rate of the disturbance is to be integrated.The direction given by using saddle point method in the theory of complex variable function is seen as mathematically most reasonable.However,unlike the saddle point method applied to water waves,here its physical meaning is not so obvious,as the frequency and wave number may be complex.And on some occasions,in advancing the integration of the growth rate of the disturbance,up to a certain location,one may not be able to continue the integration,because the condition for specifying the direction set by the saddle point method can no longer be satisfied on the basis of continuously varying wave number.In this paper,these two problems are discussed,and suggestions for how to do transition prediction under the latter condition are provided.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11232007)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(Grant No.BCXJ11-03)Funding of Jiangsu Innovation Program for Graduate Education(Grant No.CXZZ11_0191)
文摘Based on the theory of the complex variable functions, the analysis of non-axisymmetric thermal stresses in a finite matrix containing a circular inclusion with functionally graded interphase is presented by means of the least square boundary collocation technique. The distribution of thermal stress for the functionally graded interphase layer with arbitrary radial material parameters is derived by using the method of piece-wise homogeneous layers when the finite matrix is subjected to uniform heat flow. The effects of matrix size, interphase thickness and compositional gradient on the interfacial thermal stress are discussed in detail. Numerical results show that the magnitude and distribution of interfacial thermal stress in the inclusion and matrix can be designed properly by controlling these parameters.
基金supported by the National Natural Science Foundation of China(No.11271045)the Higher School Doctoral Foundation of China(No.20100003110004)
文摘This paper deals with two topics mentioned in the title. First, it is proved that function f in L^P( Da) can be decomposed into a sum g + h, where Da is an angular domain in the complex plane, g and h are the non-tangential limits of functions in H^P(Da) and H^P(aD^c) in the sense of LP(Da), respectively. Second, the sufficient and necessary conditions between boundary values of holomorphic functions and distributions in n-dimensional complex space are obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11002098 and 11332007)
文摘Up to now,the most widely used method for transition prediction is the one based on linear stability theory.When it is applied to three-dimensional boundary layers,one has to choose the direction,or path,along which the growth rate of the disturbance is to be integrated.The direction given by using saddle point method in the theory of complex variable function is seen as mathematically most reasonable.However,unlike the saddle point method applied to water waves,here its physical meaning is not so obvious,as the frequency and wave number may be complex.And on some occasions,in advancing the integration of the growth rate of the disturbance,up to a certain location,one may not be able to continue the integration,because the condition for specifying the direction set by the saddle point method can no longer be satisfied on the basis of continuously varying wave number.In this paper,these two problems are discussed,and suggestions for how to do transition prediction under the latter condition are provided.