期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复连通曲面体高维积分的Monte Carlo法 被引量:1
1
作者 吴庆标 《浙江大学学报(理学版)》 CAS CSCD 2001年第1期1-6,共6页
本文讨论了用 Monte Carlo法求积分区域为复连通曲面体的高维积分 ,即用 Monte Carlo法估计下面形式的高维积分 :I =∫G-∪sj=1Gj…∫f (x1,x2 ,… ,xn) dx1dx2 … dxn,其中 n为积分维数 ,Gj G(j=1,2 ,… ,s) ,分别根据 G体积已知 ,Gj(j... 本文讨论了用 Monte Carlo法求积分区域为复连通曲面体的高维积分 ,即用 Monte Carlo法估计下面形式的高维积分 :I =∫G-∪sj=1Gj…∫f (x1,x2 ,… ,xn) dx1dx2 … dxn,其中 n为积分维数 ,Gj G(j=1,2 ,… ,s) ,分别根据 G体积已知 ,Gj(j =1,2 ,… ,s)体积未知和 G,Gj(j=1,2 ,… ,s)体积都未知情形得出估计法、收敛性定理和具体算法 ,另外 ,也对求复连通曲面体的重心问题进行分析 ,得出估计法和收敛性定理 . 展开更多
关键词 MONTE CARLO法 高维积分 随机变量 无偏估计 复连通曲面体 收敛性 重心
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部