[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer preci...[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.展开更多
A combination of the optimal subset regression (OSR) approach,the coupled general circulation model of the National Climate Center (NCC-CGCM) and precipitation observations from 160 stations over China is used to cons...A combination of the optimal subset regression (OSR) approach,the coupled general circulation model of the National Climate Center (NCC-CGCM) and precipitation observations from 160 stations over China is used to construct a statistical downscaling forecast model for precipitation in summer.Retroactive forecasts are performed to assess the skill of statistical downscaling during the period from 2003 to 2009.The results show a poor simulation for summer precipitation by the NCCCGCM for China,and the average spatial anomaly correlation coefficient (ACC) is 0.01 in the forecast period.The forecast skill can be improved by OSR statistical downscaling,and the OSR forecast performs better than the NCC-CGCM in most years except 2003.The spatial ACC is more than 0.2 in the years 2008 and 2009,which proves to be relatively skillful.Moreover,the statistical downscaling forecast performs relatively well for the main rain belt of the summer precipitation in some years,including 2005,2006,2008,and 2009.However,the forecast skill of statistical downscaling is restricted to some extent by the relatively low skill of the NCCCGCM.展开更多
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ...Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.展开更多
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Conc...Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.展开更多
Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading mont...Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.展开更多
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been...Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.展开更多
This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled Gene...This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.展开更多
Recent findings indicate that rainfall variability over West Africa is characterized by more positive anomalies in the last four decades.The authors demonstrate that the recent interannual rainfall variability is link...Recent findings indicate that rainfall variability over West Africa is characterized by more positive anomalies in the last four decades.The authors demonstrate that the recent interannual rainfall variability is linked to an air–sea phenomenon that occurs in the tropical Atlantic and eastern Pacific Ocean,and then propose the Trans-Atlantic-Pacific Ocean Dipole(TAPOD)index as a measure for this tropical ocean phenomenon,which is found to be closely correlated with the West African summer rainfall anomalies.Using observational and reanalysis datasets,composite analysis suggests that enhanced precipitation in West Africa is associated with the positive phase of the TAPOD,which is characterized by warm sea surface temperature anomalies(SSTAs)in the tropical Atlantic and cool SSTAs in the tropical eastern Pacific Ocean.During the positive phase of the TAPOD,there are significant westerly anomalies over the tropical Atlantic Ocean,which drives anomalous water vapor convergence over West Africa,leading to enhanced precipitation in the region.展开更多
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probabil...The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.展开更多
The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height...The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height and a 700 hPa zonal vapor flux over the domain of East Asia and the West Pacific.The model was developed using data from 1958 92 and validated with an independent prediction from 1993 2008.The independent prediction was efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative root mean square error of 18%.The downscaling model was applied to two general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and future climate under B1 and A1B emission scenarios.The downscaled results pro-vided a closer representation of the observation compared to the raw models in the present climate.In addition,compared to the inconsistent prediction directly from dif-ferent GCMs,the downscaled results provided a consistent projection for this half-century,which indicated a clear increase in the YRSR.Under the B1 emission scenario,the rainfall could increase by an average of 11.9% until 2011 25 and 17.2% until 2036 50 from the current state;under the A1B emission scenario,rainfall could increase by an average of 15.5% until 2011 25 and 25.3% until 2036 50 from the current state.Moreover,the increased rate was faster in the following decade (2011 25) than the latter of this half-century (2036 50) under both emissions.展开更多
The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the ...The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.展开更多
The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century cli...The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century climate experiment and scenario A1B.The multi-model ensemble(MME)mean projects two prominent changes in the interannual variability of East Asian summer rainfall in the 21st century under scenario A1B.The first change occurs around the 2030s,with a small change before and a large increase afterward.The intensity of the interannual variability increases up to approximately 0.53 mm/d in the 2070s,representing an increase of approximately 30% relative to the early 21st century.The second change happens around the 2070s,with a decrease afterward.By the end of the 21st century,the increase is approximately 12% relative to the early 21st century.The interannual variability of two circulation factors,the western North Pacific subtropical high(WNPSH)and the East Asian upper-tropospheric jet(EAJ),are also projected to exhibit two prominent changes around the 2030s and 2070 under scenario A1B,with consistent increases and decreases afterward,respectively.The MME result also projects two prominent changes in the interannual variability of water vapor transported to East Asia at 850 hPa,which occurs separately around the 2040s and 2070s,with a persistent increase and decrease afterward.Meanwhile,the precipitable water interannual variability over East Asia and the western North Pacific is projected to exhibit two prominent enhancements around the 2030s and 2060s and an increase from 0.1 kg/m2 in the early 21st century to 0.5 kg/m2 at the end of the 21st century,implying a continuous intensification in the interannual variability of the potential precipitation.Otherwise,the intensities of the three factors'(except EAJ)interannual variability are all projected to be stronger at the end of the 21st century than that in the early period.These studies indicate that the change of interannual variability of the East Asian summer rainfall is caused by the variability of both the dynamic and thermodynamic variables under scenario A1B.In the early and middle 21st century,both factors lead to an intensified interannual variability of rainfall,whereas the dynamic factors weaken the interannual variability,and the thermodynamic factor intensifies the interannual variability in the late period.展开更多
文摘[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.
基金supported by China Meteorological Administration R & D Special Fund for Public Welfare (Meteorology) (Grant Nos. GYHY200906018 and GYHY200906015)the National Natural Science Foundation of China (Grant No.41005051)the National Key Technologies R & D Program of China (Grant No. 2009BAC51B05)
文摘A combination of the optimal subset regression (OSR) approach,the coupled general circulation model of the National Climate Center (NCC-CGCM) and precipitation observations from 160 stations over China is used to construct a statistical downscaling forecast model for precipitation in summer.Retroactive forecasts are performed to assess the skill of statistical downscaling during the period from 2003 to 2009.The results show a poor simulation for summer precipitation by the NCCCGCM for China,and the average spatial anomaly correlation coefficient (ACC) is 0.01 in the forecast period.The forecast skill can be improved by OSR statistical downscaling,and the OSR forecast performs better than the NCC-CGCM in most years except 2003.The spatial ACC is more than 0.2 in the years 2008 and 2009,which proves to be relatively skillful.Moreover,the statistical downscaling forecast performs relatively well for the main rain belt of the summer precipitation in some years,including 2005,2006,2008,and 2009.However,the forecast skill of statistical downscaling is restricted to some extent by the relatively low skill of the NCCCGCM.
基金supported by the National Basic Research Program of China under Grants 2010CB950304 and 2009CB421406the Special Fund for the public welfare indus-try (Meteorology) under Grant GYHY200906018+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant KZCX2-YW-QN202the Chinese Academy of Sciences under Grants KZCX2-YW-Q1-02 and KZCX2-YW-Q11-00
文摘Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.
基金supported by the National Basic Research Program of China(2012CB955401)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(XDA05090306)
文摘Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.
基金supported by the Special Scientific Research Project for Public Interest (Grant No.GYHY201006021)supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading
文摘Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073 and U1133603)
文摘Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.
基金supported by the National Basic Research Program of China(2012CB955603,2010CB-950302)the Chinese Academy of Sciences(XDA 05090404,LTOZZ1202)
文摘This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)[grant number XDA19030403]the National Natural Science Foundation of China [grant numbers 41575095 and41661144032]+1 种基金the CAS ‘Belt and Road Initiatives’ Program on International Cooperation [grant number134111KYSB20160010]Victor Nnamdi DIKE acknowledges the support of a CAS-TWAS President Fellowship
文摘Recent findings indicate that rainfall variability over West Africa is characterized by more positive anomalies in the last four decades.The authors demonstrate that the recent interannual rainfall variability is linked to an air–sea phenomenon that occurs in the tropical Atlantic and eastern Pacific Ocean,and then propose the Trans-Atlantic-Pacific Ocean Dipole(TAPOD)index as a measure for this tropical ocean phenomenon,which is found to be closely correlated with the West African summer rainfall anomalies.Using observational and reanalysis datasets,composite analysis suggests that enhanced precipitation in West Africa is associated with the positive phase of the TAPOD,which is characterized by warm sea surface temperature anomalies(SSTAs)in the tropical Atlantic and cool SSTAs in the tropical eastern Pacific Ocean.During the positive phase of the TAPOD,there are significant westerly anomalies over the tropical Atlantic Ocean,which drives anomalous water vapor convergence over West Africa,leading to enhanced precipitation in the region.
基金supported by the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)- Climate Sciencethe Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105019-3)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-04)
文摘The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.
基金supported by the National Basic Research Program of China (Grant No.2010CB950400)the National Natural Science Foundation of China (Key Project,Grant No.41030961)the Australia-China Bilateral Climate Change Partnerships Program of the Australian Department of Climate Change
文摘The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height and a 700 hPa zonal vapor flux over the domain of East Asia and the West Pacific.The model was developed using data from 1958 92 and validated with an independent prediction from 1993 2008.The independent prediction was efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative root mean square error of 18%.The downscaling model was applied to two general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and future climate under B1 and A1B emission scenarios.The downscaled results pro-vided a closer representation of the observation compared to the raw models in the present climate.In addition,compared to the inconsistent prediction directly from dif-ferent GCMs,the downscaled results provided a consistent projection for this half-century,which indicated a clear increase in the YRSR.Under the B1 emission scenario,the rainfall could increase by an average of 11.9% until 2011 25 and 17.2% until 2036 50 from the current state;under the A1B emission scenario,rainfall could increase by an average of 15.5% until 2011 25 and 25.3% until 2036 50 from the current state.Moreover,the increased rate was faster in the following decade (2011 25) than the latter of this half-century (2036 50) under both emissions.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07526-006-04-01)
文摘The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.
基金supported by Special Scientific Research Fund of Meteorological Public Welfare Profession (Grant No.GYHY200906020)National Basci Research Program of China (Grant No. 2010CB950304)
文摘The projected temporal evolution in the interannual variability of East Asian summer rainfall in the 21st century is investigated here,by analyzing the simulated results of 18 coupled models under the 20th century climate experiment and scenario A1B.The multi-model ensemble(MME)mean projects two prominent changes in the interannual variability of East Asian summer rainfall in the 21st century under scenario A1B.The first change occurs around the 2030s,with a small change before and a large increase afterward.The intensity of the interannual variability increases up to approximately 0.53 mm/d in the 2070s,representing an increase of approximately 30% relative to the early 21st century.The second change happens around the 2070s,with a decrease afterward.By the end of the 21st century,the increase is approximately 12% relative to the early 21st century.The interannual variability of two circulation factors,the western North Pacific subtropical high(WNPSH)and the East Asian upper-tropospheric jet(EAJ),are also projected to exhibit two prominent changes around the 2030s and 2070 under scenario A1B,with consistent increases and decreases afterward,respectively.The MME result also projects two prominent changes in the interannual variability of water vapor transported to East Asia at 850 hPa,which occurs separately around the 2040s and 2070s,with a persistent increase and decrease afterward.Meanwhile,the precipitable water interannual variability over East Asia and the western North Pacific is projected to exhibit two prominent enhancements around the 2030s and 2060s and an increase from 0.1 kg/m2 in the early 21st century to 0.5 kg/m2 at the end of the 21st century,implying a continuous intensification in the interannual variability of the potential precipitation.Otherwise,the intensities of the three factors'(except EAJ)interannual variability are all projected to be stronger at the end of the 21st century than that in the early period.These studies indicate that the change of interannual variability of the East Asian summer rainfall is caused by the variability of both the dynamic and thermodynamic variables under scenario A1B.In the early and middle 21st century,both factors lead to an intensified interannual variability of rainfall,whereas the dynamic factors weaken the interannual variability,and the thermodynamic factor intensifies the interannual variability in the late period.