全新世早期是太阳辐射加强、全球温度上升,并伴随着冰盖消融的重要时期,而其间发生的冷事件以及亚洲季风区的弱夏季风事件的成因一直是全新世早期研究的重点。对亚洲季风—海洋—极地联系研究有着重要的意义。通过分析湖南莲花洞LHD5石...全新世早期是太阳辐射加强、全球温度上升,并伴随着冰盖消融的重要时期,而其间发生的冷事件以及亚洲季风区的弱夏季风事件的成因一直是全新世早期研究的重点。对亚洲季风—海洋—极地联系研究有着重要的意义。通过分析湖南莲花洞LHD5石笋28个U/Th年龄和535个氧同位素数据重建了全新世亚洲季风演化特征,其中全新世早期分辨率达8年。LHD5石笋记录到YD结束时间为11 748±30 a B.P.,全新世开始于11 684±39 a B.P.,转换时间约为64年,与格陵兰gicc05记录在误差范围内一致。LHD5石笋记录到全新世早期6次弱夏季风事件,事件年龄中心点分别为11 461±34 a B.P.、10 354±36 a B.P.、9 957±25 a B.P.、9 062±36 a B.P.、8 744±23 a B.P.、8 144±24 a B.P.,其δ18O值的波动幅度分别为1.08‰、0.94‰、0.66‰、0.90‰、0.55‰、1.02‰,这些弱季风事件在亚洲季风区具有普遍的区域意义。除8.2 ka事件之外,10 ka B.P.之前的弱季风事件除了受到太阳活动的影响,还受到北大西洋IRD事件的影响,而之后更多地受到太阳活动和ITCZ南移的影响。展开更多
This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the ...This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the climatological mean conditions and four extreme events, the analysis indicates that wind-induced Ekman transport plays an important role in the extension of the CRDW. The strong northeastward Ekman transport induced by southeasterly wind in 1996, 2003, 2004, and 2006 pushes the core of the CRDW to the sea adjacent to Cheju-do. A comparison of the wind variation before observation among these four extreme events indicates that the expan- sion pattern of the CRDW is primarily changed by synop- tic variation with tirnescales of days to weeks, such as during a typhoon. The weak eastward extension of the CRDW in 2004, accompanied with a relatively strong southerly wind, implies that the oceanographic state (e.g., the depth of halocline) may strongly affect the impact of wind on the extension of the CRDW.展开更多
We explored a time series of the Asian summer monsoon(ASM) variability during the transition period from the middle to the late Holocene in the marginal Asian monsoon region. We used an absolutely dated ^(230)Th recor...We explored a time series of the Asian summer monsoon(ASM) variability during the transition period from the middle to the late Holocene in the marginal Asian monsoon region. We used an absolutely dated ^(230)Th record with only a ~20-year dating error, and oxygen isotope data with an 8-year average temporal resolution from the top 22-mm segment of stalagmite WXB07-4 from Wanxiang Cave, western Loess Plateau. The ASM intensity weakened gradually from 6420 to 4920 a BP, which was mainly characterized by three phases:(1) a strengthening phase with a higher precipitation amount between 6420 and 6170 a BP;(2) a smooth fluctuating interval during 6170–5700 a BP; and(3) a sudden extreme weakening period from 5700 to 4920 a BP. Interestingly, the extreme weakening interval of the ASM occurred during the period between 5700 and 4920 a BP, an abrupt change dated at 5430 a BP, which is known as the 5400 a BP, or 5.4 ka BP, event. The period included 290 years of gradual weakening, and 350 years of slow strengthening. This was synchronous with some cave records from the Asian monsoon region within dating errors. Comparing with Chinese archaeological archives over the past 7000 years, the early decline of the Yangshao Culture in the Yellow River Basin and the Hongshan Culture in the West Liao River Basin occurred during the period of gradual decrease of ASM precipitation. The dramatic decline in precipitation, caused by the extreme weakening of the ASM at 5400 a BP,may have been partly related to the decline of the Miaodigou Culture at the Yangguanzhai site in the Weihe River valley; the middle Yangshao Culture in western Henan in the Yellow River Basin; the early Dawenkou Culture on the lower reaches of the Yellow River; and the middle Hongshan Culture in the west of the Liaohe River valley. During the later period of the 5400 a BP event(5430–4920 a BP), a small amplitude increase and a subsequent sharp decrease of ASM precipitation may have also been linked to the contemporaneous prosperity and disappearance of the late Yangshao and Hongshan cultures; the disappearance of the late Yangshao Culture represented by the Yangguanzhai site in the Guanzhong basin on the Weihe River; the fourth phase of the late Yangshao Culture on the upstream Dadiwan site; the beginning of the middle Dawenkou Culture, the formation of its late stage,and the rise of the Longshan culture; and the rise of the Qujialing and Liangzhu cultures on the lower Yangtze River. Compared with the stalagmite precipitation records on the Qinghai-Tibetan Plateau, the rise and expansion of the Majiayao Culture in the upper Yellow River valley at 5300 a BP may have also been connected to the more dramatic increase of the summer monsoon precipitation at higher, rather than lower, altitudes during the late 5400 a BP event.展开更多
文摘全新世早期是太阳辐射加强、全球温度上升,并伴随着冰盖消融的重要时期,而其间发生的冷事件以及亚洲季风区的弱夏季风事件的成因一直是全新世早期研究的重点。对亚洲季风—海洋—极地联系研究有着重要的意义。通过分析湖南莲花洞LHD5石笋28个U/Th年龄和535个氧同位素数据重建了全新世亚洲季风演化特征,其中全新世早期分辨率达8年。LHD5石笋记录到YD结束时间为11 748±30 a B.P.,全新世开始于11 684±39 a B.P.,转换时间约为64年,与格陵兰gicc05记录在误差范围内一致。LHD5石笋记录到全新世早期6次弱夏季风事件,事件年龄中心点分别为11 461±34 a B.P.、10 354±36 a B.P.、9 957±25 a B.P.、9 062±36 a B.P.、8 744±23 a B.P.、8 144±24 a B.P.,其δ18O值的波动幅度分别为1.08‰、0.94‰、0.66‰、0.90‰、0.55‰、1.02‰,这些弱季风事件在亚洲季风区具有普遍的区域意义。除8.2 ka事件之外,10 ka B.P.之前的弱季风事件除了受到太阳活动的影响,还受到北大西洋IRD事件的影响,而之后更多地受到太阳活动和ITCZ南移的影响。
基金supported by the National Natural Science Foundation of China (40906014 and 40976015)the Marine Science Foundation of State Oceanic Administration of China for the Youth (2010218)
文摘This paper presents an analysis of the impact of wind on the transport of the Changiiang River Diluted Water (CRDW) in August by using the salinity data col- lected on two zonal sections near Cheju-do. Based on the climatological mean conditions and four extreme events, the analysis indicates that wind-induced Ekman transport plays an important role in the extension of the CRDW. The strong northeastward Ekman transport induced by southeasterly wind in 1996, 2003, 2004, and 2006 pushes the core of the CRDW to the sea adjacent to Cheju-do. A comparison of the wind variation before observation among these four extreme events indicates that the expan- sion pattern of the CRDW is primarily changed by synop- tic variation with tirnescales of days to weeks, such as during a typhoon. The weak eastward extension of the CRDW in 2004, accompanied with a relatively strong southerly wind, implies that the oceanographic state (e.g., the depth of halocline) may strongly affect the impact of wind on the extension of the CRDW.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41473009, 41273014, 40973007 & 40772110)
文摘We explored a time series of the Asian summer monsoon(ASM) variability during the transition period from the middle to the late Holocene in the marginal Asian monsoon region. We used an absolutely dated ^(230)Th record with only a ~20-year dating error, and oxygen isotope data with an 8-year average temporal resolution from the top 22-mm segment of stalagmite WXB07-4 from Wanxiang Cave, western Loess Plateau. The ASM intensity weakened gradually from 6420 to 4920 a BP, which was mainly characterized by three phases:(1) a strengthening phase with a higher precipitation amount between 6420 and 6170 a BP;(2) a smooth fluctuating interval during 6170–5700 a BP; and(3) a sudden extreme weakening period from 5700 to 4920 a BP. Interestingly, the extreme weakening interval of the ASM occurred during the period between 5700 and 4920 a BP, an abrupt change dated at 5430 a BP, which is known as the 5400 a BP, or 5.4 ka BP, event. The period included 290 years of gradual weakening, and 350 years of slow strengthening. This was synchronous with some cave records from the Asian monsoon region within dating errors. Comparing with Chinese archaeological archives over the past 7000 years, the early decline of the Yangshao Culture in the Yellow River Basin and the Hongshan Culture in the West Liao River Basin occurred during the period of gradual decrease of ASM precipitation. The dramatic decline in precipitation, caused by the extreme weakening of the ASM at 5400 a BP,may have been partly related to the decline of the Miaodigou Culture at the Yangguanzhai site in the Weihe River valley; the middle Yangshao Culture in western Henan in the Yellow River Basin; the early Dawenkou Culture on the lower reaches of the Yellow River; and the middle Hongshan Culture in the west of the Liaohe River valley. During the later period of the 5400 a BP event(5430–4920 a BP), a small amplitude increase and a subsequent sharp decrease of ASM precipitation may have also been linked to the contemporaneous prosperity and disappearance of the late Yangshao and Hongshan cultures; the disappearance of the late Yangshao Culture represented by the Yangguanzhai site in the Guanzhong basin on the Weihe River; the fourth phase of the late Yangshao Culture on the upstream Dadiwan site; the beginning of the middle Dawenkou Culture, the formation of its late stage,and the rise of the Longshan culture; and the rise of the Qujialing and Liangzhu cultures on the lower Yangtze River. Compared with the stalagmite precipitation records on the Qinghai-Tibetan Plateau, the rise and expansion of the Majiayao Culture in the upper Yellow River valley at 5300 a BP may have also been connected to the more dramatic increase of the summer monsoon precipitation at higher, rather than lower, altitudes during the late 5400 a BP event.