期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可解释的麻雀优化随机森林算法的驾驶疲劳检测方法
1
作者 赵国亮 刘强 +2 位作者 陈泽平 朱靖龙 李波 《科学技术与工程》 北大核心 2024年第30期13161-13169,共9页
针对疲劳驾驶难以准确检测和检测模型可解释性低的问题,提出了一种可解释的麻雀优化随机森林模型(SSA-RFC-SHAP)用于驾驶疲劳检测。以驾驶员脉搏波信号为数据源,进行心率变异性分析并提取特征指标;通过皮尔逊相关性检验和卡方独立性检... 针对疲劳驾驶难以准确检测和检测模型可解释性低的问题,提出了一种可解释的麻雀优化随机森林模型(SSA-RFC-SHAP)用于驾驶疲劳检测。以驾驶员脉搏波信号为数据源,进行心率变异性分析并提取特征指标;通过皮尔逊相关性检验和卡方独立性检验筛选出用于驾驶疲劳程度判别的特征指标集;通过麻雀算法对随机森林分类器进行优化并建立驾驶疲劳三分类检测模型;最后利用夏普利加性解释算法对模型检测结果进行可解释性分析。结果表明:提出的SSA-RFC-SHAP模型在驾驶疲劳三分类检测任务中,准确率、精确率、召回率和F 1分别达到90.52%、90.34%、90.16%、90.24%,高于RFC、BiLSTM、CNN-LSTM和Gradient Boosting模型;在模型的可解释性方面,得到了各特征对模型预测的影响以及模型的具体决策过程,其中MeanHR与疲劳状态存在负相关关系,MedianNN和LF与疲劳状态存在正相关关系。可见提出的SSA-RFC-SHAP驾驶疲劳检测模型可为驾驶疲劳预警提供科学指导。 展开更多
关键词 交通安全 驾驶疲劳检测 解释 夏普利加性解释算法 心率变异 麻雀优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部