TO evaluate the effects of abdominal trauma on hemorrhagic shock-induced acute lung injury in rats. METHODS: Five groups were allocated (n = 8) in the study. Group Ⅰ was taken as the control group, group Ⅱ as the...TO evaluate the effects of abdominal trauma on hemorrhagic shock-induced acute lung injury in rats. METHODS: Five groups were allocated (n = 8) in the study. Group Ⅰ was taken as the control group, group Ⅱ as the hemorrhagic shock group, group Ⅲ as hemorrhagic shock + laparotomy, group Ⅳ as hemorrhagic shock + splenectomy and group V as splenectomy + omentectomy + hemorrhagic shock group. Hemorrhagic shock was induced by drawing blood and reducing mean arterial pressure (MAP) to 40 mmHg within 10 min. After a hypotensive period of 1 h, animals were resuscitated. Bronchoalveolar lavage (BAL) was performed to recover cells from the alveolar space with 40 mL of BAL fluid after resuscitation malondialdehyde (MDA) and L-γ-glutamyl-L-cysteinylglycine (GSH) levels were measured in serum, erythrocytes and lung tissue. RESULTS: Serum, erythrocyte, lung tissue MDA and GSH levels were significantly increased in hemorrhagic shock groups Ⅱ-Ⅴ (P 〈 0.05). Lymphocyte, neutrophil and alveolar macrophage counts in BAL fluid indicated a significant difference between control and shock groups (P 〈 0.05). CONCLUSION: The degree of trauma increases hemorrhagic shock-induced acute lung injury.展开更多
Inducible heat shock protein 70 kD (HSP-70i) has been shown to protect cells, tissues, and organs from harmful assaults in in vivo and in vitro experimental models. Hemorrhagic shock followed by resuscitation is the p...Inducible heat shock protein 70 kD (HSP-70i) has been shown to protect cells, tissues, and organs from harmful assaults in in vivo and in vitro experimental models. Hemorrhagic shock followed by resuscitation is the principal cause of death among trauma patients and soldiers in the battlefield. Although the underlying mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS) overexpression play important roles in producing injury caused by hemorrhagic shock including increases in polymorphonuclear neutrophils (PMN) infiltration to injured tissues and leukotriene B4 (LTB4) generation. Moreover, transcription factors responsible for iNOS expression are also altered by hemorrhage and resuscitation. It has been evident that either up-regulation of HSP-70i or down-regulation of iNOS can limit tissue injury caused by ischemia/reperfusion or hemorrhage/resuscitation. In our laboratory, geldanamycin, a member of ansamycin family, has been shown to induce HSP-70i overexpression and then subsequently to inhibit iNOS expression, to reduce cellular caspase-3 activity, and to preserve cellular ATP levels. HSP-70i is found to couple to iNOS and its transcription factor. Therefore, the complex formation between HSP-70i and iNOS may be a novel mechanism for protection from hemorrhage/resuscitation-in-duced injury.展开更多
文摘TO evaluate the effects of abdominal trauma on hemorrhagic shock-induced acute lung injury in rats. METHODS: Five groups were allocated (n = 8) in the study. Group Ⅰ was taken as the control group, group Ⅱ as the hemorrhagic shock group, group Ⅲ as hemorrhagic shock + laparotomy, group Ⅳ as hemorrhagic shock + splenectomy and group V as splenectomy + omentectomy + hemorrhagic shock group. Hemorrhagic shock was induced by drawing blood and reducing mean arterial pressure (MAP) to 40 mmHg within 10 min. After a hypotensive period of 1 h, animals were resuscitated. Bronchoalveolar lavage (BAL) was performed to recover cells from the alveolar space with 40 mL of BAL fluid after resuscitation malondialdehyde (MDA) and L-γ-glutamyl-L-cysteinylglycine (GSH) levels were measured in serum, erythrocytes and lung tissue. RESULTS: Serum, erythrocyte, lung tissue MDA and GSH levels were significantly increased in hemorrhagic shock groups Ⅱ-Ⅴ (P 〈 0.05). Lymphocyte, neutrophil and alveolar macrophage counts in BAL fluid indicated a significant difference between control and shock groups (P 〈 0.05). CONCLUSION: The degree of trauma increases hemorrhagic shock-induced acute lung injury.
文摘Inducible heat shock protein 70 kD (HSP-70i) has been shown to protect cells, tissues, and organs from harmful assaults in in vivo and in vitro experimental models. Hemorrhagic shock followed by resuscitation is the principal cause of death among trauma patients and soldiers in the battlefield. Although the underlying mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS) overexpression play important roles in producing injury caused by hemorrhagic shock including increases in polymorphonuclear neutrophils (PMN) infiltration to injured tissues and leukotriene B4 (LTB4) generation. Moreover, transcription factors responsible for iNOS expression are also altered by hemorrhage and resuscitation. It has been evident that either up-regulation of HSP-70i or down-regulation of iNOS can limit tissue injury caused by ischemia/reperfusion or hemorrhage/resuscitation. In our laboratory, geldanamycin, a member of ansamycin family, has been shown to induce HSP-70i overexpression and then subsequently to inhibit iNOS expression, to reduce cellular caspase-3 activity, and to preserve cellular ATP levels. HSP-70i is found to couple to iNOS and its transcription factor. Therefore, the complex formation between HSP-70i and iNOS may be a novel mechanism for protection from hemorrhage/resuscitation-in-duced injury.